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e Goal: find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).
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Graph matching (graph alignment)

e Goal: find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).

e Since graph alignment is NP-hard to solve/approximate in worst case,
we instead consider some average-case models.
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An idealized model: correlated Erdés-Rényi graphs model

Go ~ G(n, p)
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An idealized model: correlated Erdés-Rényi graphs model

Gy~ G(n,q £ ps)

ZenS

Go ~ G(n, p)

G

s(1—p)

Marginal edge density: g = ps; edge correlation: p = 1ps -
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Information thresholds and efficient algorithms

Three inference tasks: detection, exact recovery, partial recovery.
e Detection: test correlation against independence.

e Exact recovery: correctly match all vertices.

e Partial recovery: correctly match a positive fraction of vertices.
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Information thresholds and efficient algorithms

Three inference tasks: detection, exact recovery, partial recovery.
e Detection: test correlation against independence.

e Exact recovery: correctly match all vertices.

e Partial recovery: correctly match a positive fraction of vertices.

We will focus on the sparse regime where g = n—1t°(1),

[Wu-Xu-Yu'23][Ding-Du'22,23][Feng’25]: Detection/partial recovery
(respectively, exact recovery) is information-theoretically possible if and
only if p > . A /o (respectively, p > Iog”) where a ~ 0.338 is the
Otter's constant
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Information thresholds and efficient algorithms

Three inference tasks: detection, exact recovery, partial recovery.
e Detection: test correlation against independence.

e Exact recovery: correctly match all vertices.

e Partial recovery: correctly match a positive fraction of vertices.

We will focus on the sparse regime where g = n—1t°(1),

[Wu-Xu-Yu'23][Ding-Du'22,23][Feng’25]: Detection/partial recovery
(respectively, exact recovery) is information-theoretically possible if and

only if p > - A Va (respectively, p > Iog”) where o ~ 0.338 is the
Otter's constant

[Mao-Wu-Xu-Yu'21,23][Ganassali-Massoulié-Lelarge'23,24]:
Detection/partial recovery is possible by efficient algorithms if p > \/«;
exact recovery is possible if p > \/a and ng > log n.
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The low-degree polynomial framework
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The low-degree polynomial framework

e Degree-D test: multivariate polynomials f : {0, 1}2x(g) — R of degree
D =D,
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The low-degree polynomial framework

e Degree-D test: multivariate polynomials f : {0, 1}2x(g) — R of degree
D =D,

e “Success’: f = f, strongly/weakly separates P and Q if

\/max{Varp(f)7Var@(f)} =0(1)/0(1) - |Ep[f] — EQ[f]‘ .
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e Degree-D test: multivariate polynomials f : {0, 1}2x(g) — R of degree
D =D,

e “Success’: f = f, strongly/weakly separates P and Q if

\/max{Varp(f)7Var@(f)} =0(1)/0(1) - |Ep[f] — EQ[f]‘ .

e Heuristics: failure of degree-D polynomials = failure of algorithms with
running time nP/ polviog(n)
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The low-degree polynomial framework

e Degree-D test: multivariate polynomials f : {0, 1}2x(g) — R of degree
D =D,

e “Success’: f = f, strongly/weakly separates P and Q if

\/max{Varp(f)7Var@(f)} =0(1)/0(1) - |Ep[f] — EQ[f]‘ .

e Heuristics: failure of degree-D polynomials = failure of algorithms with
running time nP/ polviog(n)

e Usually prove the “failure” of degree-D polynomials by showing the following
bound on the low-degree advantage for some TV(P,P'), TV(Q, Q') = o(1):

Adv<p (P, Q') = Ee [f]

= maX —F—=
deg(f)<D \/EQ![fQ]

= 0(1)/1 + o(1)
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e Degree-D test: multivariate polynomials f : {0, 1}2x(g) — R of degree
D =D,
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\/max{Varp(f)7Var@(f)} =0(1)/0(1) - |Ep[f] — EQ[f]‘ .
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e Usually prove the “failure” of degree-D polynomials by showing the following
bound on the low-degree advantage for some TV(P,P'), TV(Q, Q') = o(1):

Adv<p (P, Q') = Ee [f]

= maX —F—=
deg(f)<D \/EQ![fQ]

[Ding-Du-L."23]: Adv<p(P', Q') = O(1) when p < \/a and D = exp (o(12£%)).

= 0(1)/1 + o(1)

Zhangsong Li Algorithmic Contiguity August 2025



The low-degree polynomial framework

e Degree-D test: multivariate polynomials f : {0, 1}2x(g) — R of degree
D =D,

e “Success’: f = f, strongly/weakly separates P and Q if

\/max{Varp(f)7Var@(f)} =0(1)/0(1) - {Ep[f] — EQ[f]‘ .

e Heuristics: failure of degree-D polynomials = failure of algorithms with
running time nP/ polviog(n)

e Usually prove the “failure” of degree-D polynomials by showing the following
bound on the low-degree advantage for some TV(P,P'), TV(Q, Q') = o(1):

Ep[f

Adv<p(P', Q') = U

= maX —F—=
deg(f)<D \/EQ![fQ]

[Ding—Du—L.'23]: AdVSD(PlaQ/) = O(]_) when P < \/& and D = exp (O( log n ))

log ng

= 0(1)/1 + o(1)

e This suggests that detection is “hard”. What about partial recovery?
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Our results

We say a family of estimators {h;; : 1 <i,j < n} (h;; estimates 1. (j)—;)
achieves partial recovery if

e hjj€{0,1} forall i,j w.h.p. under P.

@ hi1+ ...+ hj,=1forall i wh.p. under P.

® P(X1cicn him. (i) = Q2n)) = Q(1).
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Our results

We say a family of estimators {h;; : 1 <i,j < n} (h;; estimates 1. (j)—;)
achieves partial recovery if

e hjj€{0,1} forall i,j w.h.p. under P.
@ hi1+ ...+ hj,=1forall i wh.p. under P.

® P(X1cicn him. (i) = Q2n)) = Q(1).

Theorem (L.'2025+, informal)

Assuming low-degree conjecture, for the correlated Erd6s-Rényi model
G(n,q,p), when g = n=+°() and p < \/a all estimators {h;;} that
achieves partial recovery requires running time nP/PoWog(n) yhere

D = exp (o(IL"ggn';)).
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Ingredient: algorithmic contiguity
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Ingredient: algorithmic contiguity

[Ding-Du-L."23]: for any p < y/a and any D = D, = exp (o(lgoggn';)),

Adv<p(P, Q") = O(1) for some TV(P,P'), TV(Q,Q") = o(1).
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Ingredient: algorithmic contiguity

[Ding-Du-L."23]: for any p < y/a and any D = D, = exp (o(llooggn';)),

Adv<p(P, Q") = O(1) for some TV(P,P'), TV(Q,Q") = o(1).

e “Standard” low-degree conjecture: strong detection requires time
exp(D/ polylog(n)).

e Improvement (algorithmic contiguity): any one-sided detection
algorithm A = A, such that

P(A=1)=Q(1), QU=0)=1-o(1)

requires running time exp(D/ polylog(n)).
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Proof of algorithmic contiguity

@ Assume on the contrary that an algorithm A such that
P(A=1)=Q(1) and Q(A =0) =1— ¢ where ¢ = ¢, — 0. WLOG
€n > 1/ poly(n).
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Proof of algorithmic contiguity

@ Assume on the contrary that an algorithm A such that
P(A=1)=Q(1) and Q(A =0) =1— ¢ where ¢ = ¢, — 0. WLOG
€n > 1/ poly(n).

o let M= M, = 6;1/2 and consider the following detection problem:

o Q=0%M,
o P=lawof (Yi,...,Ym) st Yo ~Pand Y;j~Q:j+#k for some
K € unif([M]);
Then Q((A(Y1), ... A(Ym)) = (0,...,0)) =1 — o(1) and
P((A(Y1),... A(Ym)) # (0,...,0)) = Q(1).
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Proof of algorithmic contiguity

@ Assume on the contrary that an algorithm A such that
P(A=1)=Q(1) and Q(A =0) =1— ¢ where ¢ = ¢, — 0. WLOG
€n > 1/ poly(n).

o let M=M, = 6;1/2 and consider the following detection problem:

o Q=0%M,
o P=lawof (Yi,...,Ym) st Yo ~Pand Y;j~Q:j+#k for some
K € unif([M]);
Then Q((A(Y1), ... A(Ym)) = (0,...,0)) =1 — o(1) and
P((A(Y1),... A(Ym)) # (0,...,0)) = Q(1).

e However, Adv<p(P,Q) = O(1) = AdeD(@, Q) =1+ o(1), which

leads to contradiction.
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Hardness of partial recovery: proof idea

@ Assume on the contrary that {h;;} achieves partial recovery. WLOG
hij€{0,1} and >, h;; € {0.1} hold for all realizations.
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Hardness of partial recovery: proof idea

@ Assume on the contrary that {h;;} achieves partial recovery. WLOG
hij€{0,1} and >, h;; € {0.1} hold for all realizations.
o We expect that

{hij} achieves partial recovery
= P(hj r, iy = 1) = Q1) for some i
= P(h;j =1 | m(i) = j) = Q1) for Q(n) number of ;.
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Hardness of partial recovery: proof idea

@ Assume on the contrary that {h;;} achieves partial recovery. WLOG
hij€{0,1} and >, h;; € {0.1} hold for all realizations.
o We expect that

{hij} achieves partial recovery
= P(hj r, iy = 1) = Q1) for some i
= P(h;j =1 | m(i) = j) = Q1) for Q(n) number of ;.
@ We can show that Adv<p(P(- | m«(i) = j), Q) = O(1) (similar to the

detection lower bound). Thus algorithmic contiguity implies that
Q(hij=1)>Q(1).
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Hardness of partial recovery: proof idea

@ Assume on the contrary that {h;;} achieves partial recovery. WLOG
hij€{0,1} and >, h;; € {0.1} hold for all realizations.
o We expect that

{hij} achieves partial recovery
= P(hj r, iy = 1) = Q1) for some i
= P(h;j =1 | m(i) = j) = Q1) for Q(n) number of ;.

@ We can show that Adv<p(P(- | m«(i) = j), Q) = O(1) (similar to the
detection lower bound). Thus algorithmic contiguity implies that
Q(hij=1)>Q(1).

o Yields Eqg[>_; <, hi,j] = Q(n), contradiction to (x)!
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Summary and future perspectives

@ We know that in sparse correlated Erd6s-Rényi graphs, detection is
easy when the correlation p > \/a and hard when p < \/a. But what
about partial recovery?

@ Assuming low-degree conjecture, we found a reduction from partial
recovery to detection. Thus partial recovery is also hard when
p < e

@ Key ingredient: developing “algorithmic contiguity” between two
probability measures from bounded low-degree advantage.

@ Open: more “direct” analysis for low-degree hardness for partial
recovery?
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