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Graph matching (graph alignment)

• Goal: find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).

• Since graph alignment is NP-hard to solve/approximate in worst case,
we instead consider some average-case models.
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An idealized model: correlated Erdős-Rényi graphs model
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Marginal edge density: q = ps; edge correlation: ρ = s(1−p)
1−ps .
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Information thresholds and efficient algorithms

Three inference tasks: detection, exact recovery, partial recovery.
• Detection: test correlation against independence.
• Exact recovery: correctly match all vertices.
• Partial recovery: correctly match a positive fraction of vertices.

We will focus on the sparse regime where q = n−1+o(1).

[Wu-Xu-Yu’23][Ding-Du’22,23][Feng’25]: Detection/partial recovery
(respectively, exact recovery) is information-theoretically possible if and
only if ρ > 1

nq ∧
√
α (respectively, ρ > log n

nq ), where α ≈ 0.338 is the
Otter’s constant.

[Mao-Wu-Xu-Yu’21,23][Ganassali-Massoulié-Lelarge’23,24]:
Detection/partial recovery is possible by efficient algorithms if ρ >

√
α;

exact recovery is possible if ρ >
√
α and nq > log n.
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The low-degree polynomial framework

• Degree-D test: multivariate polynomials f : {0, 1}2×(
n
2) −→ R of degree

D = Dn

• “Success”: f = fn strongly/weakly separates P and Q if√
max{VarP(f ),VarQ(f )} = o(1)/O(1) ·

∣∣EP[f ]− EQ[f ]
∣∣ .

• Heuristics: failure of degree-D polynomials =⇒ failure of algorithms with
running time nD/ polylog(n).

• Usually prove the “failure” of degree-D polynomials by showing the following
bound on the low-degree advantage for some TV(P,P′),TV(Q,Q′) = o(1):

Adv≤D(P′,Q′) := max
deg(f )≤D

EP′ [f ]√
EQ′ [f 2]

= O(1)/1 + o(1)

[Ding-Du-L.’23]: Adv≤D(P′,Q′) = O(1) when ρ <
√
α and D = exp

(
o( log n

log nq )
)
.

• This suggests that detection is “hard”. What about partial recovery?
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Our results

We say a family of estimators {hi ,j : 1 ≤ i , j ≤ n} (hi ,j estimates 1π∗(i)=j)
achieves partial recovery if

hi ,j ∈ {0, 1} for all i , j w.h.p. under P.
hi ,1 + . . .+ hi ,n = 1 for all i w.h.p. under P.
P(
∑

1≤i≤n hi ,π∗(i) ≥ Ω(n)) ≥ Ω(1).

Theorem (L.’2025+, informal)

Assuming low-degree conjecture, for the correlated Erdős-Rényi model
G(n, q, ρ), when q = n−1+o(1) and ρ <

√
α all estimators {hi ,j} that

achieves partial recovery requires running time nD/ polylog(n), where
D = exp

(
o( log n

log nq )
)
.
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Ingredient: algorithmic contiguity

[Ding-Du-L.’23]: for any ρ <
√
α and any D = Dn = exp

(
o
( log n
log nq

))
,

Adv≤D(P′,Q′) = O(1) for some TV(P,P′),TV(Q,Q′) = o(1) .

• “Standard” low-degree conjecture: strong detection requires time
exp(D/ polylog(n)).

• Improvement (algorithmic contiguity): any one-sided detection
algorithm A = An such that

P(A = 1) = Ω(1) , Q(A = 0) = 1− o(1)

requires running time exp(D/ polylog(n)).
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Proof of algorithmic contiguity

Assume on the contrary that an algorithm A such that
P(A = 1) = Ω(1) and Q(A = 0) = 1− ϵ where ϵ = ϵn → 0. WLOG
ϵn ≥ 1/ poly(n).

Let M = Mn = ϵ
−1/2
n and consider the following detection problem:

Q̂ = Q⊗M ;
P̂ = law of (Y1, . . . ,YM) s.t. Yκ ∼ P and Yj ∼ Q : j ̸= κ for some
κ ∈ unif([M]);

Then Q̂((A(Y1), . . .A(YM)) = (0, . . . , 0)) = 1− o(1) and
P̂((A(Y1), . . .A(YM)) ̸= (0, . . . , 0)) = Ω(1).

However, Adv≤D(P,Q) = O(1) =⇒ Adv≤D(P̂, Q̂) = 1 + o(1), which
leads to contradiction.
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Hardness of partial recovery: proof idea

Assume on the contrary that {hi ,j} achieves partial recovery. WLOG
hi ,j ∈ {0, 1} and

∑
1≤j≤n hi ,j ∈ {0, 1} hold for all realizations.

We expect that

{hi ,j} achieves partial recovery

=⇒ P(hi ,π∗(i) = 1) = Ω(1) for some i

=⇒ P(hi ,j = 1 | π∗(i) = j) = Ω(1) for Ω(n) number of j .

We can show that Adv≤D(P(· | π∗(i) = j),Q) = O(1) (similar to the
detection lower bound). Thus algorithmic contiguity implies that
Q(hi ,j = 1) ≥ Ω(1).

Yields EQ[
∑

1≤j≤n hi ,j ] = Ω(n), contradiction to (∗)!
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Summary and future perspectives

We know that in sparse correlated Erdős-Rényi graphs, detection is
easy when the correlation ρ >

√
α and hard when ρ <

√
α. But what

about partial recovery?

Assuming low-degree conjecture, we found a reduction from partial
recovery to detection. Thus partial recovery is also hard when
ρ <

√
α.

Key ingredient: developing “algorithmic contiguity” between two
probability measures from bounded low-degree advantage.

Open: more “direct” analysis for low-degree hardness for partial
recovery?

Reference:
Zhangsong Li. Algorithmic Contiguity and Applications in Correlated
Random Graphs. arXiv:2502.09832v3.
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