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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns
the edges.

Quadratic Assignment Problem (QAP): maxΠ∈Sn⟨A,ΠBΠ⊤⟩.
NP-hard to solve/approximate in worst case.
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An idealistic model: correlated (weighted) random graphs

π∗: latent permutation on [n] = {1, . . . , n}.

Observation: two weighted random graphs A and B, s.t.
(Ai ,j ,Bπ∗(i),π∗(j)) ∼ F.

Two special cases:

Correlated Gaussian Wigner model. F = N (0,

(
1 ρ
ρ 1

)
).

Correlated Erdős-Rényi model. F = law of two Ber(q) with covariance
ρ.

Goal: recover π∗ (exactly/partially) using efficient algorithms

Noiseless case (ρ = 1): optimal condition is attained in linear-time
[Bollobás’82, Czajka-Pandurangan’08].
Noisy case (ρ < 1): little is known for efficient algorithms until recently.
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The robustness limitations

Progressively improved random graph matching algorithms have been
obtained by community (e.g. [Barak-Chou-Lei-Schramm-Sheng’19,
Ding-Ma-Wu-Xu’21, Ganassali-Massoulié-Lelarge’22,
Mao-Wu-Xu-Yu’23, Ding-L.’22,23], etc.)

[Ameen-Hajek’24]: many efficient random graph matching algorithms
will break down if one adversarially modify a small fraction of edges.

Reason: algorithms based on sophisticated subgraph structures/
delicate spectral properties are not robust under adversarial
perturbations (e.g., planting a Θ(

√
n) clique or other “undesired”

subgraphs).

Motivation from application: somewhat more “practical” graph
matching algorithm?

Motivation from theory: can we find efficient graph matching
algorithms for semi-random models?
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Mao-Wu-Xu-Yu’23, Ding-L.’22,23], etc.)

[Ameen-Hajek’24]: many efficient random graph matching algorithms
will break down if one adversarially modify a small fraction of edges.

Reason: algorithms based on sophisticated subgraph structures/
delicate spectral properties are not robust under adversarial
perturbations (e.g., planting a Θ(

√
n) clique or other “undesired”

subgraphs).

Motivation from application: somewhat more “practical” graph
matching algorithm?

Motivation from theory: can we find efficient graph matching
algorithms for semi-random models?

Zhangsong Li Robust Random Graph Matching July 2025 4 / 9



The robustness limitations

Progressively improved random graph matching algorithms have been
obtained by community (e.g. [Barak-Chou-Lei-Schramm-Sheng’19,
Ding-Ma-Wu-Xu’21, Ganassali-Massoulié-Lelarge’22,
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The corrupted correlated Gaussian model

First sample (A,B) from the law of correlated Gaussian Wigner
model.

Corruption: An adversary can arbitrary choose two subsets Q,R ⊂ [n]
with |Q|, |R| = ϵn and arbitrary revise the entries {Ai ,j : i , j ∈ Q} and
{Bi ,j : i , j ∈ R} according to A,B.

Observation: the revised matrices (A′,B ′) = (A+ E ,B + F ), where
E ,F supported on an unknown ϵn ∗ ϵn principle minor of (A,B).
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Our result: a robust Gaussian matching algorithm

ρ: edge correlation; ϵn: size of corruption; π∗: hidden matching.

Theorem (L.’25)

Exact recovery is achieved efficiently by an approximate message passing
algorithm w.h.p. if

ρ = Ω(1) and ϵ = o( 1
(log n)20

) .

The requirement ρ = Ω(1) matches the best result in the non-robust
setting [Ding-L.’22].

The first graph matching algorithm that is robust under n1−o(1) size
of perturbations.

Extends to the case of correlated Erdős-Rényi models when the
edge-density q is a constant.
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Approximate message passing (AMP)

A general framework for estimating hidden structures given data matrix A.

Compress sensing [Donoho-Maleki-Montanari’09]

Sparse PCA [Deshpande-Montanari’14]

Linear regression [Krzakala-Mézard-Sausset-Sun-Zdeborová’12]

Perceptron models [Ding-Sun’18]

Usually in the form of the following iteration:

f (t+1) = φ ◦
(

1√
n
Af (t)Ξ(t)

)
↑ ↑

estimator for the hidden signal entrywise transform by a suitable denoiser

[Ivkov-Schramm’25]: using a spectral cleaning procedure, AMP algorithms
can be performed robustly.

Zhangsong Li Robust Random Graph Matching July 2025 7 / 9



Approximate message passing (AMP)

A general framework for estimating hidden structures given data matrix A.

Compress sensing [Donoho-Maleki-Montanari’09]

Sparse PCA [Deshpande-Montanari’14]

Linear regression [Krzakala-Mézard-Sausset-Sun-Zdeborová’12]
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Perceptron models [Ding-Sun’18]

Usually in the form of the following iteration:

f (t+1) = φ ◦
(

1√
n
Af (t)Ξ(t)

)
↑ ↑

estimator for the hidden signal entrywise transform by a suitable denoiser

[Ivkov-Schramm’25]: using a spectral cleaning procedure, AMP algorithms
can be performed robustly.

Zhangsong Li Robust Random Graph Matching July 2025 7 / 9



Approximate message passing (AMP)

A general framework for estimating hidden structures given data matrix A.

Compress sensing [Donoho-Maleki-Montanari’09]

Sparse PCA [Deshpande-Montanari’14]

Linear regression [Krzakala-Mézard-Sausset-Sun-Zdeborová’12]
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Our algorithmic approach

ρ: edge correlation; ϵn: size of corruption; π∗: hidden matching.

Usually, in an AMP algorithm we hope our estimator f (t) converges
to the hidden signal (e.g., the hidden matching).

Our strategy: iteratively construct “signatures” using AMP iteration

f (t+1) = φ ◦
(

1√
n
A′f (t)Ξ(t)

)
, f (t) =

(
f
(t)
1 , . . . , f

(t)
n

)⊤
,

g (t+1) = φ ◦
(

1√
n
B ′g (t)Ξ(t)

)
, g (t) =

(
g
(t)
1 , . . . , g

(t)
n

)⊤
.

Hope: if we choose a suitable denoiser function φ and Ξ(t), then at a
large time t∗ we will have

Π∗ = arg max
Π∈Sn

⟨f (t∗),Πg (t∗)⟩ ,

then we can find Π∗ by solving a linear assignment problem.
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Conclusions and open problems

We found a poly-time algorithm that matches two correlated
Gaussian matrices with constant correlation even when two n

poly(log n)
size submatrices are adversarially corrupted.

Our method: construct “signatures” by iteratively running an vector
AMP on two matrices.

A few open problems:

Other ways of corruption (e.g., corruption on arbitrary small edge set)?
Robust algorithm for sparse graphs (edge density q = n−α+o(1) when
α > 0)?
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