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Introduction

What is graph matching?

@ Graphs: abstract models of objects and their
connections.
@ Graph matching: identifying the same node in
different graphs by similar topological structures.
e e.g. isomorphic trees, dense subgraphs, etc.

@ Graph matching helps identifying the same object
appearing in different networks.
@ Various applications in real-world scenes.

Network de-anonymization.
Protein-protein interaction network.
Computer Vision.

Machine Translation, etc.
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Examples of applications

Linked[T. v @ Network de.-anonyrrTization: (1) suc.cessfully .
- de-anonymize Netflix by matching it to IMDB in
= 1 %? Narayanan-Shmatikov '08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in

Narayanan-Shmatikov '09.
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@ Network de-anonymization: (1) successfully

Linked [} L de-anonymize Netflix by matching it to IMDB in
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@ Network de-anonymization: (1) successfully
de-anonymize Netflix by matching it to IMDB in
Narayanan-Shmatikov '08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in
Narayanan-Shmatikov '09.

@ Protein-protein interaction network: discover proteins
with similar functions across different species based
on interaction network topology in
Kazemi-Hassani-Grossglauser-Modarres '16;

@ Computer Vision: detect similar objects that undergo
different deformations in Lahner et al '16.
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Introduction

Examples of applications

Linked ] . 4 @ Network de-anonymization: (1) successfully

s Poyr

de-anonymize Netflix by matching it to IMDB in
Narayanan-Shmatikov '08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in
Narayanan-Shmatikov '09.

Protein-protein interaction network: discover proteins
with similar functions across different species based
on interaction network topology in
Kazemi-Hassani-Grossglauser-Modarres '16;

Computer Vision: detect similar objects that undergo
different deformations in Lahner et al "16.

Machine Translation: automatically find correct
corresponding wiki articles in different languages in

Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe '12.
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Introduction

Mathematical formulation of graph matching

e Goal: find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).
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Introduction

Mathematical formulation of graph matching

e Goal: find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).

e Since graph matching is a hard optimization problem (NP-hard), we seek
help from randomness.
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Introduction

An idealized model: Correlated Erdos-Rényi graphs model

GO ~ g(na P)
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There is no structure in randomness: there is an edge between a pair of
vertices with probability p independently.

Graph Matching in SBM

5/15



Introduction

An idealized model: Correlated Erdés-Rényi graphs model

G~ G(n,q £ ps)

GO ~ g(na p)

G

There is no structure in randomness: there is an edge between a pair of
vertices with probability p independently.

Advantage: simple probabilistic model; suitable playground for developing
mathematical theory.

Graph Matching in SBM 515



An idealized model: Correlated Erdés-Rényi graphs model

G~ G(n,q £ ps)

GO ~ g(na P)

G
There is no structure in randomness: there is an edge between a pair of
vertices with probability p independently.
Advantage: simple probabilistic model; suitable playground for developing
mathematical theory.
Disadvantage: almost all realistic networks are not Erdds-Rényi.
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A more realistic variant: Stochastic block model
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@ Introduced in Holland-Laskey-Leinhardt83 and has attracted
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® ® o; ~ Unif({-1,1}) @ ® pij = d(1+ eojo;)
®®@ ®e
v Viabeled G ~ 8(n,d;e€)

@ community structure: an edge joins i and j with probability
pij = d(1 + €ojo;) depending on wether i and j belong to the same
community or not.

@ Introduced in Holland-Laskey-Leinhardt83 and has attracted
significant attentions in physics, statistics, probability, and TCS.
(See Decelle-Krzakala-Moore-Zdeborova'll,
Mossel-Neeman-Sly'12,13a,13b,14, Abbé-Sandon 15a,15b...)

@ Generalization to kK communities (denoted by S(n, d; k, €)):

o g; ~ Unif({1,2,...,k});
o pj = d(1+ ew(oi,0;)) where w(oi,0;) = =1+ k- 150 -
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Introduction

Correlated stochastic block model

.

\
N
Go ~ 8(n,d; k,¢€)
G G

o Generated by independently subsampling Go ~ S(n, d; k, €) with
probability s.
e Denoted by S(n, d; k,¢; s).
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Previous results on Erdds-Rényi model

Information threshold: what is the teststone?

Three thresholds: detection, exact recovery, partial recovery.

e Detection: test correlation against independence.

e Exact recovery: correctly match all vertices.

e Partial recovery: correctly match a positive fraction of vertices.

Previous results on matching correlated Erdés-Rényi graphs:
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Information threshold: what is the teststone?

Three thresholds: detection, exact recovery, partial recovery.

e Detection: test correlation against independence.

e Exact recovery: correctly match all vertices.

e Partial recovery: correctly match a positive fraction of vertices.

Previous results on matching correlated Erdés-Rényi graphs:

@ Wu-Xu-Yu'20, 21: progress based on maximal common graph (see
Ganassali-Massoulié-Lelarge for p = 1/n).

o Methods: let 7 be the bijection that maximizes the number of common
edges €.

@ Detection: |€]| is large = correlation.
e Matching: estimate 7* by #.

o D.-Du'23, Du25+: Exact detection and partial recovery threshold in
the non-dense regime, via densest subgraph.
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Previous results on Erdés-Rényi model

Matching algorithms for correlated graphs

Results prior to 2021 (requiring correlation tending to 1):

Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19,
D.-Ma-Wu-Xu'21, Fan-Mao-Wu-Xu'2022.
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@ Ganassali-Massoulié-Lelarge'204-,22+: poly-time partial matching
algorithm for sparse graphs based on message passing, when
correlation > /Otter’s constant =~ 1/0.3383.
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much wider parameter regime).

Graph Matching in SBM 015



Matching algorithms for correlated graphs

Results prior to 2021 (requiring correlation tending to 1):
Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19,
D.-Ma-Wu-Xu'21, Fan-Mao-Wu-Xu'2022.

Recent progress on matching algorithms:

@ Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some
partition trees, when correlation > const (close to 1).

@ Ganassali-Massoulié-Lelarge'204-,22+: poly-time partial matching
algorithm for sparse graphs based on message passing, when
correlation > /Otter’s constant =~ 1/0.3383.

o Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation
> +/Otter's constant, based on a carefully curated family of rooted
trees called chandeliers (substantially improving MRT21+, and covers
much wider parameter regime).

o D.-Li'22+, 234 poly-time iterative algorithm when correlation is
non-vanishing and average degree grows polynomially.

Graph Matching in SBM 9/15




Previous results on Erdds-Rényi model

Complexity theory: how to certify computational hardness?

@ Traditionally, complexity theory studies hardness of computational
problems for worst-case instance.
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@ Application in data privacy: how can we perform a minimal change on
the Linkedin and Twitter network, so that it would be computationally
hard to recover the matching from the this perturbed observation?
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Complexity theory: how to certify computational hardness?

@ Traditionally, complexity theory studies hardness of computational
problems for worst-case instance.
@ Usually certify hardness by reduction: if you could solve this problem,
then you can solve some well-known hard problems.
@ For problems with random instance, we care about the hardness for a
typical instance. Evidences of hardness include
o show as hard as well-known hard problems (much more difficult on
random instance than for worst-case instance);
e show that a wide class of algorithms fail to solve the problem
(D'-Du-Li"23+: low-degree polynomial complexity);
o exhibit similar structural properties as in other hard problems.
@ Application in data privacy: how can we perform a minimal change on
the Linkedin and Twitter network, so that it would be computationally
hard to recover the matching from the this perturbed observation?

o Information-computation gap: a major challenge in many random
combinatorial optimization and constraint satisfaction problems!
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Previous results on stochastic block model

Finding communities in stochastic block model

Go ~ S(n,d; k,¢) Gp with estimated communities
e Community recovery/detection: estimate/detect the existence of
community structure.

@ Decelle-Krzakala-Moore-Zdeborova'll:

o Computational transition (under low-degree conjecture) around
Kesten-Stigum threshold, i.e., Ae? = 1 Hopkins-Steurer'16.

o Presumably information-computation gap if and only if kK > 5
(Mossel-Neeman-Sly'16, Massoulié'16 for k = 2 and
Mossel-Sly-Sohn'23,24 for general k).
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Previous results on stochastic block model

Prior works in logarithmic regime
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Previous results on stochastic block model

Prior works in logarithmic regime

@ Racz-Sridhar'22, Gaudio-Racz-Sridhar'22, Riacz-Zhang'24: in the
logarithmic regime, exact community recovery in multiple correlated
block models is (informationally) possible even when:

o (1) exact community recovery in each single block model is
(informationally) impossible;

e (2) exact graph matching between different graphs is (informationally)
impossible.
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@ Racz-Sridhar'22, Gaudio-Racz-Sridhar'22, Riacz-Zhang'24: in the
logarithmic regime, exact community recovery in multiple correlated
block models is (informationally) possible even when:

e (1) exact community recovery in each single block model is

(informationally) impossible;
e (2) exact graph matching between different graphs is (informationally)

impossible.
@ Yang-Shin-Chung'23, Chai-Racz'24: generalize some graph matching
algorithms developed in Erdés-Rényi models to block models.
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@ Racz-Sridhar'22, Gaudio-Racz-Sridhar'22, Riacz-Zhang'24: in the
logarithmic regime, exact community recovery in multiple correlated
block models is (informationally) possible even when:

o (1) exact community recovery in each single block model is
(informationally) impossible;

e (2) exact graph matching between different graphs is (informationally)
impossible.

@ Yang-Shin-Chung'23, Chai-Racz'24: generalize some graph matching
algorithms developed in Erdés-Rényi models to block models.
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e What about (arguably more interesting) constant degree regime?
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Prior works in logarithmic regime

@ Racz-Sridhar'22, Gaudio-Racz-Sridhar'22, Riacz-Zhang'24: in the
logarithmic regime, exact community recovery in multiple correlated
block models is (informationally) possible even when:

o (1) exact community recovery in each single block model is
(informationally) impossible;

e (2) exact graph matching between different graphs is (informationally)
impossible.

@ Yang-Shin-Chung'23, Chai-Racz'24: generalize some graph matching
algorithms developed in Erdés-Rényi models to block models.

Two natural questions:
e What about (arguably more interesting) constant degree regime?

@ Is there any case that we can break the algorithmic barrier in
Erd6s-Rényi model?
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Computational hardness in constant degree regime
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Computational hardness in constant degree regime

Consider two children graphs Gi, G, subsampled from a common parent
block model with edge-density A, community number k and subsampling
probability s. In the constant degree regime A = O(1):
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Our results on stochastic block model

Computational hardness in constant degree regime

Consider two children graphs Gi, G, subsampled from a common parent
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Computational hardness in constant degree regime

Consider two children graphs Gi, G, subsampled from a common parent
block model with edge-density A, community number k and subsampling
probability s. In the constant degree regime A = O(1):
Chen-D.-Gong-Li'24+: Assuming the low-degree conjecture, the
(algorithmic) detection threshold between this model and two independent
Erd6és-Rényi model is simply determined by

@ (1) community detection threshold in a single block model;
@ (2) correlation detection threshold in a pair of Erdds-Rényi graphs.

In conclusion, no interplay between community detection and network
correlation detection.

Using a reduction technique in Li'25+, indicates in the subcritical regime
(i.e., when community signal cannot be extracted from a single graph) the
detection threshold between correlated /independent block models is still
Otter's threshold.
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Break Otter's barrier with strong community signal

Chen-D.-Gong-Li'254: For two symmetric communities, detect correlation
efficiently breaking Otter's threshold if the community signal is

“sufficiently large” (i.e., A2 > 1 and thus possible to recover 99% of
community labels).

o First algorithm breaking Otter's threshold in sparse correlated graphs;
reveals a new phase transition phenomenon.

@ Expected to extend to a partial matching algorithm and to all
supercritical block models with general number of communities.

An ongoing challenge: extending the above result to as long as \e? > 1.
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@ A step forward of meeting theory and applications:

o Currently, most extensively studied models are idealized.

e Many algorithms and their analysis are based on unrealistic model
assumptions, e.g., local tree structure for social network model.

e Major challenge 1: propose models with general applicability where
theorists can say something meaningful.

e Major challenge 2: propose new perspectives and formulations on
graph matching from real-world applications (e.g. stability of matching
algorithms under perturbations; editing graphs to make matching
impossible, etc.)

@ Bridging what is wanted with what is possible.

Reference: all mentioned works available on arXiv.
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