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Introduction

What is graph matching?

Graphs: abstract models of objects and their
connections.

Graph matching: identifying the same node in
different graphs by similar topological structures.

e.g. isomorphic trees, dense subgraphs, etc.

Graph matching helps identifying the same object
appearing in different networks.

Various applications in real-world scenes.

Network de-anonymization.
Protein-protein interaction network.
Computer Vision.
Machine Translation, etc.
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Network de-anonymization: (1) successfully
de-anonymize Netflix by matching it to IMDB in
Narayanan-Shmatikov ’08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in
Narayanan-Shmatikov ’09.
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proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

Network de-anonymization: (1) successfully
de-anonymize Netflix by matching it to IMDB in
Narayanan-Shmatikov ’08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in
Narayanan-Shmatikov ’09.

Protein-protein interaction network: discover proteins
with similar functions across different species based
on interaction network topology in
Kazemi-Hassani-Grossglauser-Modarres ’16;
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de-anonymize Netflix by matching it to IMDB in
Narayanan-Shmatikov ’08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in
Narayanan-Shmatikov ’09.

Protein-protein interaction network: discover proteins
with similar functions across different species based
on interaction network topology in
Kazemi-Hassani-Grossglauser-Modarres ’16;

Computer Vision: detect similar objects that undergo
different deformations in Lähner et al ’16.
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. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

Network de-anonymization: (1) successfully
de-anonymize Netflix by matching it to IMDB in
Narayanan-Shmatikov ’08; (2) correctly identified
30.8% of node mappings between Twitter&Flickr in
Narayanan-Shmatikov ’09.

Protein-protein interaction network: discover proteins
with similar functions across different species based
on interaction network topology in
Kazemi-Hassani-Grossglauser-Modarres ’16;

Computer Vision: detect similar objects that undergo
different deformations in Lähner et al ’16.

Machine Translation: automatically find correct
corresponding wiki articles in different languages in
Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe ’12.
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Mathematical formulation of graph matching

• Goal: find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).

• Since graph matching is a hard optimization problem (NP-hard), we seek
help from randomness.
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There is no structure in randomness: there is an edge between a pair of
vertices with probability p independently.
Advantage: simple probabilistic model; suitable playground for developing
mathematical theory.
Disadvantage: almost all realistic networks are not Erdős-Rényi.
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Jian Ding Graph Matching in SBM 5/ 15



Introduction

A more realistic variant: Stochastic block model
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community structure: an edge joins i and j with probability
pij = d(1 + ϵσiσj) depending on wether i and j belong to the same
community or not.

Introduced in Holland-Laskey-Leinhardt83 and has attracted
significant attentions in physics, statistics, probability, and TCS.
(See Decelle-Krzakala-Moore-Zdeborová’11,
Mossel-Neeman-Sly’12,13a,13b,14, Abbé-Sandon 15a,15b. . .)
Generalization to k communities (denoted by S(n, d ; k , ϵ)):

σi ∼ Unif({1, 2, . . . , k});
pij = d(1 + ϵω(σi , σj)) where ω(σi , σj) = −1 + k · 1{σi=σj} .
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Generalization to k communities (denoted by S(n, d ; k , ϵ)):

σi ∼ Unif({1, 2, . . . , k});
pij = d(1 + ϵω(σi , σj)) where ω(σi , σj) = −1 + k · 1{σi=σj} .

Jian Ding Graph Matching in SBM 6/ 15



Introduction

A more realistic variant: Stochastic block model

0

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

0
eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

0

1

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

1

eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

1
2

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

2

eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)
23

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

3

eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)
3

4

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

4

eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

4

5

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

5
eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

5

6

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

6
eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

6
7

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

7

eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

78

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

8

eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

8
9

V

uniform labeling

σi ∼ Unif({−1, 1})

Vlabeled

9
eij ∼ Bern(1, pij)

pij = d(1 + ϵσiσj)

G ∼ S(n, d ; ϵ)

9

community structure: an edge joins i and j with probability
pij = d(1 + ϵσiσj) depending on wether i and j belong to the same
community or not.

Introduced in Holland-Laskey-Leinhardt83 and has attracted
significant attentions in physics, statistics, probability, and TCS.
(See Decelle-Krzakala-Moore-Zdeborová’11,
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significant attentions in physics, statistics, probability, and TCS.
(See Decelle-Krzakala-Moore-Zdeborová’11,
Mossel-Neeman-Sly’12,13a,13b,14, Abbé-Sandon 15a,15b. . .)

Generalization to k communities (denoted by S(n, d ; k , ϵ)):
σi ∼ Unif({1, 2, . . . , k});
pij = d(1 + ϵω(σi , σj)) where ω(σi , σj) = −1 + k · 1{σi=σj} .
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Generated by independently subsampling G0 ∼ S(n, d ; k , ϵ) with
probability s.

Denoted by S(n, d ; k , ϵ; s).
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Previous results on Erdős-Rényi model

Information threshold: what is the teststone?

Three thresholds: detection, exact recovery, partial recovery.
• Detection: test correlation against independence.
• Exact recovery: correctly match all vertices.
• Partial recovery: correctly match a positive fraction of vertices.

Previous results on matching correlated Erdős-Rényi graphs:

Wu-Xu-Yu’20, 21: progress based on maximal common graph (see
Ganassali-Massoulié-Lelarge for p ≈ 1/n).

Methods: let π̂ be the bijection that maximizes the number of common
edges E .

Detection: |E| is large ⇒ correlation.
Matching: estimate π∗ by π̂.

D.-Du’23, Du25+: Exact detection and partial recovery threshold in
the non-dense regime, via densest subgraph.
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Previous results on Erdős-Rényi model

Matching algorithms for correlated graphs

Results prior to 2021 (requiring correlation tending to 1):
Dai-Cullina-Kiyavash-Grossglauser’18, Barak-Chou-Lei-Schramm-Sheng’19,
D.-Ma-Wu-Xu’21, Fan-Mao-Wu-Xu’2022.

Recent progress on matching algorithms:

Mao-Rudelson-Tikhomirov’21+: poly-time algorithm based some
partition trees, when correlation ≥ const (close to 1).

Ganassali-Massoulié-Lelarge’20+,22+: poly-time partial matching
algorithm for sparse graphs based on message passing, when
correlation >

√
Otter’s constant ≈

√
0.3383.

Mao-Wu-Xu-Yu’22+: poly-time algorithm when correlation
>

√
Otter’s constant, based on a carefully curated family of rooted

trees called chandeliers (substantially improving MRT21+, and covers
much wider parameter regime).

D.-Li’22+, 23+: poly-time iterative algorithm when correlation is
non-vanishing and average degree grows polynomially.
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Previous results on Erdős-Rényi model

Complexity theory: how to certify computational hardness?

Traditionally, complexity theory studies hardness of computational
problems for worst-case instance.

Usually certify hardness by reduction: if you could solve this problem,
then you can solve some well-known hard problems.

For problems with random instance, we care about the hardness for a
typical instance. Evidences of hardness include

show as hard as well-known hard problems (much more difficult on
random instance than for worst-case instance);
show that a wide class of algorithms fail to solve the problem
(D’–Du–Li’23+: low-degree polynomial complexity);
exhibit similar structural properties as in other hard problems.

Application in data privacy: how can we perform a minimal change on
the Linkedin and Twitter network, so that it would be computationally
hard to recover the matching from the this perturbed observation?

Information-computation gap: a major challenge in many random
combinatorial optimization and constraint satisfaction problems!
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Complexity theory: how to certify computational hardness?

Traditionally, complexity theory studies hardness of computational
problems for worst-case instance.
Usually certify hardness by reduction: if you could solve this problem,
then you can solve some well-known hard problems.

For problems with random instance, we care about the hardness for a
typical instance. Evidences of hardness include

show as hard as well-known hard problems (much more difficult on
random instance than for worst-case instance);
show that a wide class of algorithms fail to solve the problem
(D’–Du–Li’23+: low-degree polynomial complexity);
exhibit similar structural properties as in other hard problems.

Application in data privacy: how can we perform a minimal change on
the Linkedin and Twitter network, so that it would be computationally
hard to recover the matching from the this perturbed observation?

Information-computation gap: a major challenge in many random
combinatorial optimization and constraint satisfaction problems!

Jian Ding Graph Matching in SBM 10 / 15



Previous results on Erdős-Rényi model
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Previous results on stochastic block model

Finding communities in stochastic block model
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Community recovery/detection: estimate/detect the existence of
community structure.

Decelle-Krzakala-Moore-Zdeborová’11:

Computational transition (under low-degree conjecture) around
Kesten-Stigum threshold, i.e., λϵ2 = 1 Hopkins-Steurer’16.
Presumably information-computation gap if and only if k ≥ 5
(Mossel-Neeman-Sly’16, Massoulié’16 for k = 2 and
Mossel-Sly-Sohn’23,24 for general k).
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Previous results on stochastic block model

Prior works in logarithmic regime

Rácz-Sridhar’22, Gaudio-Rácz-Sridhar’22, Rácz-Zhang’24: in the
logarithmic regime, exact community recovery in multiple correlated
block models is (informationally) possible even when:

(1) exact community recovery in each single block model is
(informationally) impossible;
(2) exact graph matching between different graphs is (informationally)
impossible.

Yang-Shin-Chung’23, Chai-Rácz’24: generalize some graph matching
algorithms developed in Erdős-Rényi models to block models.

Two natural questions:

What about (arguably more interesting) constant degree regime?

Is there any case that we can break the algorithmic barrier in
Erdős-Rényi model?
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Our results on stochastic block model

Computational hardness in constant degree regime

Consider two children graphs G1,G2 subsampled from a common parent
block model with edge-density λ, community number k and subsampling
probability s. In the constant degree regime λ = O(1):
Chen-D.-Gong-Li’24+: Assuming the low-degree conjecture, the
(algorithmic) detection threshold between this model and two independent
Erdős-Rényi model is simply determined by

(1) community detection threshold in a single block model;

(2) correlation detection threshold in a pair of Erdős-Rényi graphs.

In conclusion, no interplay between community detection and network
correlation detection.
Using a reduction technique in Li’25+, indicates in the subcritical regime
(i.e., when community signal cannot be extracted from a single graph) the
detection threshold between correlated/independent block models is still
Otter’s threshold.
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Our results on stochastic block model

Break Otter’s barrier with strong community signal

Chen-D.-Gong-Li’25+: For two symmetric communities, detect correlation
efficiently breaking Otter’s threshold if the community signal is
“sufficiently large” (i.e., λϵ2 ≫ 1 and thus possible to recover 99% of
community labels).

First algorithm breaking Otter’s threshold in sparse correlated graphs;
reveals a new phase transition phenomenon.

Expected to extend to a partial matching algorithm and to all
supercritical block models with general number of communities.

An ongoing challenge: extending the above result to as long as λϵ2 > 1.
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Perspectives and future directions

Perspectives and future directions

A step forward of meeting theory and applications:

Currently, most extensively studied models are idealized.
Many algorithms and their analysis are based on unrealistic model
assumptions, e.g., local tree structure for social network model.
Major challenge 1: propose models with general applicability where
theorists can say something meaningful.
Major challenge 2: propose new perspectives and formulations on
graph matching from real-world applications (e.g. stability of matching
algorithms under perturbations; editing graphs to make matching
impossible, etc.)

Bridging what is wanted with what is possible.

Reference: all mentioned works available on arXiv.
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