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Application 1: Network de-anonymization
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@ Successfully de-anonymize Netflix by matching it to IMDB.
[Narayanan-Shmatikov '08]
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@ Successfully de-anonymize Netflix by matching it to IMDB.
[Narayanan-Shmatikov '08]

@ Correctly identified 30.8% of node mappings between Twitter and
Flickr. [Narayanan-Shmatikov '09]
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Application

Network de-anonymization
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Human network

Mouse network

Figure 2: [Kazemi-Hassani-Grossglauser-Modarres '16]

@ Ontology: Discover proteins with similar functions across different
species based interaction network topology.
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An idealized model: correlated Erdos-Rényi graphs

TN

G ~G(n,q £ ps)

Go ~ G(n, p)
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An idealized model: correlated Erdos-Rényi graphs

@ There is no structure in randomness: there is an edge between each
pair of vertices with probability p independently.
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@ There is no structure in randomness: there is an edge between each
pair of vertices with probability p independently.

@ Advantage: simple probabilistic model; suitable playground for
developing mathematical theory.
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An idealized model: correlated Erdos-Rényi graphs

Gi~G(n,q = ps)

@ There is no structure in randomness: there is an edge between each
pair of vertices with probability p independently.

@ Advantage: simple probabilistic model; suitable playground for
developing mathematical theory.

@ Disadvantage: almost all realistic networks are not Erdés-Rényi.
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Information-computation phase transition

@ Intuitively, the matching 7* that maximize the common edge
between two graphs (i.e. the MLE) should be the most
effective estimator for recovering the latent matching .
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Information-computation phase transition

@ Intuitively, the matching 7* that maximize the common edge
between two graphs (i.e. the MLE) should be the most
effective estimator for recovering the latent matching .

@ Reduced the problem into the network alignment problem of
correlated random graphs.

@ Unfortunately, the classical graph alignment problem is a
NP-hard optimization problem, so we must seek help from
randomness.
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Quick overview on information threshold

@ Three thresholds: detection, partial recovery, exact recovery;
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@ [Wu-Xu-Yu'20,21]: progress based analyzing MLE (see also
Ganassali-Massoulié-Lelarge for p ~ 1/n).
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@ [Wu-Xu-Yu'20,21]: progress based analyzing MLE (see also
Ganassali-Massoulié-Lelarge for p ~ 1/n).

@ Results: determine the exact information threshold for exact
recovery; Determine the information threshold for
partial-recovery and detection in the dense region (p = n°())
exactly and in the non-dense region (p = n—ato(l) where
0 < a < 1) up to constants.
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Quick overview on information threshold

@ Three thresholds: detection, partial recovery, exact recovery;

@ [Wu-Xu-Yu'20,21]: progress based analyzing MLE (see also
Ganassali-Massoulié-Lelarge for p ~ 1/n).

@ Results: determine the exact information threshold for exact
recovery; Determine the information threshold for
partial-recovery and detection in the dense region (p = n°())
exactly and in the non-dense region (p = n—ato(l) where
0 < a < 1) up to constants.

@ [Ding-Du'22+a,22+4-b|: determine the exact information
threshold for detection and partial-recovery in the non-dense
region via a modified statistics based on densest subgraphs.
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Matching algorithms for correlated graphs (up to 2021)

@ “Signature” based algorithm: for each vertex, compute a
“signature” and match pairs of vertices with similar signatures.
Desired properties for signature: informative, computable,
tractable, generalizable.
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Matching algorithms for correlated graphs (up to 2021)

@ “Signature” based algorithm: for each vertex, compute a
“signature” and match pairs of vertices with similar signatures.
Desired properties for signature: informative, computable,
tractable, generalizable.

@ [Dai-Cullina-Kiyavash-Grossglauser'18]
[Barak-Chou-Lei-Schramm-Sheng'19] [Ding-Mao-Wu-Xu'21].

@ "“Optimization relaxation” based algorithm:

o [Fan-Mao-Wu-Xu'19+]. Original optimization problem is hard
to solve, but feasible if enlarge the space of potential solutions
(e.g. to a convex space).

@ All the above algorithms either run in pseudo-polynomial time (i.e.
nOlog ")) or succeeds only when the correlation approaches 1 (with
rate polylog n).
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Recent progress on matching algorithm

@ [Mao-Rudelson-Tikhomirov'21+]: poly-time algorithm based on
partition trees, when p in particular region and correlation > 0.99
(constant close to 1).
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Recent progress on matching algorithm

@ [Mao-Rudelson-Tikhomirov'21+]: poly-time algorithm based on
partition trees, when p in particular region and correlation > 0.99
(constant close to 1).

@ [Ganassali-Massoulié-Lelarge'20+,22+]: poly-time partial matching
algorithm for sparse graphs based on message passing, when
correlation > +/Otter’s constant ~ 1/0.338.

@ [Mao-Wu-Xu-Yu'22+]: poly-time algorithm when correlation
> 4/ Otter's constant, based on a carefully curated family of rooted
trees called chandeliers (substantially improving MRT21+, and
covers much wider parameter regime).
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@ Based on previous works (especially MWXY22+, GML22+), you
might guess the computation threshold for random graph matching
is indeed given by the Otter’s constant.
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Our contributions

@ Based on previous works (especially MWXY22+, GML22+), you
might guess the computation threshold for random graph matching
is indeed given by the Otter’s constant.

@ [Ding-L."22+]: poly-time iterative algorithm for matching Gaussian
matrices when correlation is non-vanishing.

o New feature: signal is stored in a vector where each coordinate
is a pair of sets, and signal per coordinate decreases with
iteration but compensated by increase on dimension.

o Expected to be sharp, and should extend to graph matching
(although with substantial challenge) assuming np > n® for
a> 0.

e Might shed lights on many matching problems too.

@ An ongoing work with J. Ding: A polynomial time iterative
algorithm for random graph matching with non-vanishing
correlation.
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Perspectives and future directions

@ A hub of theorists: combinatorics, probability, statistics, algorithms,
complexity theory, optimization, etc.

@ A meeting point of theory and applications:

@ Currently, most extensively studied models are idealistic. Even
worse, many times algorithms and analysis are based on wrong
model assumptions, e.g., local tree structure for social network
model.

e Major challenge 1: propose models with general applicability
where theorists can say something meaningful.

e Major challenge 2: propose models for important scientific
problems worth extensive theoretic study.
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