Low-degree Hardness for Detection in Correlated Erdős-Rényi Graphs

Zhangsong Li

School of Mathematical Sciences Peking University

January 22, 2024

Based on a joint work with J. Ding (PKU) and H. Du (MIT)

Application: network de-anonymization

Figure 1: Picture courtesy of R.Srikant

Application: network de-anonymization

Figure 1: Picture courtesy of R.Srikant

 Successfully de-anonymize Netflix by matching it to IMDB. [Narayanan-Shmatikov '08]

Application: network de-anonymization

Figure 1: Picture courtesy of R.Srikant

- Successfully de-anonymize Netflix by matching it to IMDB. [Narayanan-Shmatikov '08]
- Correctly identified 30.8% of node mappings between Twitter and Flickr. [Narayanan-Shmatikov '09]

An idealized model: correlated Erdős-Rényi graphs

An idealized model: correlated Erdős-Rényi graphs

• G_1 and G_2 are Erdős-Rényi graphs with edge-density q = ps, and edge-correlation $\rho = \frac{s(1-p)}{1-ps}$.

An idealized model: correlated Erdős-Rényi graphs

- G_1 and G_2 are Erdős-Rényi graphs with edge-density q = ps, and edge-correlation $\rho = \frac{s(1-p)}{1-ps}$.
- Two basic problems regarding this model: (1) the detection problem, i.e., testing P against the law of two independent Erdős-Rényi graphs on with edge density q; (2) the matching problem, i.e., recovering the latent matching π_{*} from the adjacency matrices (A, B) of (G₁, G₂).

Zhangsong Li 4 / 20

• [Wu-Xu-Yu '20,21]: progress based analyzing MLE (the maximum common graph).

- [Wu-Xu-Yu '20,21]: progress based analyzing MLE (the maximum common graph).
- Results: determine the exact information threshold for exact recovery; Determine the information threshold for partial-recovery and detection in the dense region $(p = n^{o(1)})$ exactly and in the non-dense region $(p = n^{-c+o(1)})$ where 0 < c < 1 up to constants.

- [Wu-Xu-Yu '20,21]: progress based analyzing MLE (the maximum common graph).
- Results: determine the exact information threshold for exact recovery; Determine the information threshold for partial-recovery and detection in the dense region $(p = n^{o(1)})$ exactly and in the non-dense region $(p = n^{-c+o(1)})$ where 0 < c < 1 up to constants.
- [Ding-Du '23a,23b]: determine the exact information threshold for detection and partial-recovery in the non-dense region via a modified statistics based on densest subgraphs.

 Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash-Grossglauser '18], [Barak-Chou-Lei-Schramm-Sheng '19], [Ding-Ma-Wu-Xu '21], [Mao-Rudelson-Tikhomirov '21], etc.)

Efficient algorithms

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash-Grossglauser '18], [Barak-Chou-Lei-Schramm-Sheng '19], [Ding-Ma-Wu-Xu '21], [Mao-Rudelson-Tikhomirov '21], etc.)
- The state-of-the-art algorithm:

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash-Grossglauser '18], [Barak-Chou-Lei-Schramm-Sheng '19], [Ding-Ma-Wu-Xu '21], [Mao-Rudelson-Tikhomirov '21], etc.)
- The state-of-the-art algorithm:
 - [Mao-Wu-Xu-Yu '21+,23]: polynomial time algorithm for detection/matching when $q > \frac{\log n}{n}$ and correlation $\rho > \sqrt{\alpha}$ where $\alpha \approx 0.338$ is the Otter's constant, based on counting carefully curated family of rooted trees.

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash-Grossglauser '18], [Barak-Chou-Lei-Schramm-Sheng '19], [Ding-Ma-Wu-Xu '21], [Mao-Rudelson-Tikhomirov '21], etc.)
- The state-of-the-art algorithm:
 - [Mao-Wu-Xu-Yu '21+,23]: polynomial time algorithm for detection/matching when $q > \frac{\log n}{n}$ and correlation $\rho > \sqrt{\alpha}$ where $\alpha \approx 0.338$ is the Otter's constant, based on counting carefully curated family of rooted trees.
 - [Ding-L. '22+,23+]: polynomial time iterative algorithm for matching when p ≥ n^{-1+δ} and correlation ρ non-vanishing.

regime	Info, Detection	Info, ExaMatch	Alg
$q = n^{o(1)}$	$\rho^2 > \frac{\log n}{nq\log q^{-1}}$	$\rho^2 > \frac{\log n}{nq \log q^{-1}}$	$ ho = \Omega(1)$
$q = n^{-1+c+o(1)}$	$\rho^2 > \frac{\lambda_*}{nq}$	$\rho^2 > \frac{\log n}{nq}$	$ ho = \Omega(1)$
$q = n^{-1+o(1)}$	$ ho^2 > \left(\frac{1}{nq} \wedge u_0\right)$	$\rho^2 > \frac{\log n}{nq}$	$\rho^2 > \alpha$

 λ_{*} (resp. u₀) are constants that can be determined in [DD23a] (resp. [WXY23]); α is the Otter's constant.

regime	Info, Detection	Info, ExaMatch	Alg
$q = n^{o(1)}$	$\rho^2 > \frac{\log n}{nq\log q^{-1}}$	$\rho^2 > \frac{\log n}{nq \log q^{-1}}$	$ ho = \Omega(1)$
$q = n^{-1+c+o(1)}$	$\rho^2 > \frac{\lambda_*}{nq}$	$\rho^2 > \frac{\log n}{nq}$	$ ho = \Omega(1)$
$q = n^{-1+o(1)}$	$\rho^2 > \left(\frac{1}{nq} \wedge u_0\right)$	$\rho^2 > \frac{\log n}{nq}$	$\rho^2 > \alpha$

- λ_{*} (resp. u₀) are constants that can be determined in [DD23a] (resp. [WXY23]); α is the Otter's constant.
- Information-computation gaps: a major challenge in many random combinatorial optimization problems.

regime	Info, Detection	Info, ExaMatch	Alg
$q = n^{o(1)}$	$\rho^2 > \frac{\log n}{nq \log q^{-1}}$	$\rho^2 > \frac{\log n}{nq \log q^{-1}}$	$ ho = \Omega(1)$
$q = n^{-1+c+o(1)}$	$\rho^2 > \frac{\lambda_*}{nq}$	$\rho^2 > \frac{\log n}{nq}$	$ ho = \Omega(1)$
$q = n^{-1+o(1)}$	$\rho^2 > \left(\frac{1}{nq} \wedge u_0\right)$	$\rho^2 > \frac{\log n}{nq}$	$\rho^2 > \alpha$

- λ_{*} (resp. u₀) are constants that can be determined in [DD23a] (resp. [WXY23]); α is the Otter's constant.
- Information-computation gaps: a major challenge in many random combinatorial optimization problems.
- Question: how to give lower bounds on computational complexity for problems with random input?

• The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.
 - Based on multivariate $f : \mathbb{R}^N \to \mathbb{R}^M$ with degree $\leq D$.

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.
 - Based on multivariate $f : \mathbb{R}^N \to \mathbb{R}^M$ with degree $\leq D$.
 - Usually low-degree means $D = O(\log N)$.

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.
 - Based on multivariate $f : \mathbb{R}^N \to \mathbb{R}^M$ with degree $\leq D$.
 - Usually low-degree means $D = O(\log N)$.
 - In some cases (e.g. [Montanari-Wein' 22+]), the "optimal" algorithm is captured by a degree-O(1) polynomial.

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.
 - Based on multivariate $f : \mathbb{R}^N \to \mathbb{R}^M$ with degree $\leq D$.
 - Usually low-degree means $D = O(\log N)$.
 - In some cases (e.g. [Montanari-Wein' 22+]), the "optimal" algorithm is captured by a degree-O(1) polynomial.
- Some low-degree algorithms:

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.
 - Based on multivariate $f : \mathbb{R}^N \to \mathbb{R}^M$ with degree $\leq D$.
 - Usually low-degree means $D = O(\log N)$.
 - In some cases (e.g. [Montanari-Wein' 22+]), the "optimal" algorithm is captured by a degree-O(1) polynomial.
- Some low-degree algorithms:
 - Spectral methods (power iteration)

- The low-degree polynomial method, originated from sum-of-squares literature, provides a framework for predicting and explaining computational hardness in average-case.
- It studies a restricted class of algorithms: low-degree polynomial algorithms.
 - Based on multivariate $f : \mathbb{R}^N \to \mathbb{R}^M$ with degree $\leq D$.
 - Usually low-degree means $D = O(\log N)$.
 - In some cases (e.g. [Montanari-Wein' 22+]), the "optimal" algorithm is captured by a degree-O(1) polynomial.
- Some low-degree algorithms:
 - Spectral methods (power iteration)
 - Approximate message passing (AMP)

速⇒

→ ★ 歴 ▶ ★

• Low-degree polynomials seem to be optimal for many problems! E.g., for planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, etc. It is the case that

- Low-degree polynomials seem to be optimal for many problems! E.g., for planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, etc. It is the case that
 - The best known poly-time algorithms are captured by low-degree polynomials (spectral/AMP/...);

- Low-degree polynomials seem to be optimal for many problems! E.g., for planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, etc. It is the case that
 - The best known poly-time algorithms are captured by low-degree polynomials (spectral/AMP/...);
 - Low-degree polynomials fail in the conjectured "hard" regime.

- Low-degree polynomials seem to be optimal for many problems! E.g., for planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, etc. It is the case that
 - The best known poly-time algorithms are captured by low-degree polynomials (spectral/AMP/...);
 - Low-degree polynomials fail in the conjectured "hard" regime.
- [Hopkins'18] "Low-degree conjecture" (informal): for "natural" problems, the failure of degree-D polynomials implies the failure of all algorithms with running time e^{Θ̃(D)}.

Theorem (Ding-Du-L., informal)

There is evidence suggesting that algorithms based on polynomials of degree $O(\rho^{-1})$ fail for detection in the correlated Erdős-Rényi graph model.

Furthermore, if q, ρ satisfies $nq = n^{o(1)}$ and $\rho^2 < \alpha - \varepsilon$ for some arbitrary constant $\varepsilon > 0$ (where $\alpha \approx 0.338$ denotes the Otter's constant), then there is evidence suggesting that algorithms based on polynomials of degree D fail for detection as long as

$$\log D = o\left(rac{\log n}{\log nq} \wedge \sqrt{\log n}
ight)\,.$$

Theorem (Ding-Du-L., informal)

There is evidence suggesting that algorithms based on polynomials of degree $O(\rho^{-1})$ fail for detection in the correlated Erdős-Rényi graph model.

Furthermore, if q, ρ satisfies $nq = n^{o(1)}$ and $\rho^2 < \alpha - \varepsilon$ for some arbitrary constant $\varepsilon > 0$ (where $\alpha \approx 0.338$ denotes the Otter's constant), then there is evidence suggesting that algorithms based on polynomials of degree D fail for detection as long as

$$\log D = o\left(rac{\log n}{\log nq} \wedge \sqrt{\log n}
ight)\,.$$

 Also suggest that the (exact) graph matching problem is computationally hard in the aforementioned regimes.

Theorem (Ding-Du-L., informal)

There is evidence suggesting that algorithms based on polynomials of degree $O(\rho^{-1})$ fail for detection in the correlated Erdős-Rényi graph model.

Furthermore, if q, ρ satisfies $nq = n^{o(1)}$ and $\rho^2 < \alpha - \varepsilon$ for some arbitrary constant $\varepsilon > 0$ (where $\alpha \approx 0.338$ denotes the Otter's constant), then there is evidence suggesting that algorithms based on polynomials of degree D fail for detection as long as

$$\log D = o\left(rac{\log n}{\log nq} \wedge \sqrt{\log n}
ight)\,.$$

• Also suggest that the (exact) graph matching problem is computationally hard in the aforementioned regimes.

伺 ト く ほ ト く ほ ト

In particular, suggest that the algorithms in [MWXY21+,23]
 [DL22+,23+] have nearly reached the limit of efficient algorithms.

	Algorithms	Hardness
Detection dense regime	$ ho = \Omega(1); D = O(1)$ [DL23+]	$ ho=o(1); D=O(ho^{-1})$
Detection sparse regime	$ ho > \sqrt{lpha}; D = O(1)$ [MWXY21+]	$ ho < \sqrt{lpha}; \log D = o(d(n,q))$
ExaMatch dense regime	$ ho = \Omega(1); D = O(1)$ [DL23+]	$ ho=o(1); D=O(ho^{-1})$
ExaMatch sparse regime	$ ho > \sqrt{\alpha}; D = O(\log n)$ [MWXY23]	$ ho < \sqrt{lpha}; \log D = o(d(n,q))$

•
$$d(n,q) = \frac{\log n}{\log nq} \wedge \sqrt{\log n}$$
.

• $\alpha \approx$ 0.338 is the Otter's constant.
• Goal: hypothesis test with error probability o(1) between:

- Goal: hypothesis test with error probability o(1) between:
 - Null model $(A, B) \sim \mathbb{Q}$ (i.e., two independent $\mathbf{G}(n, q)$)

- Goal: hypothesis test with error probability o(1) between:
 - Null model $(A,B) \sim \mathbb{Q}$ (i.e., two independent $\mathbf{G}(n,q)$)
 - Planted model $(A, B) \sim \mathbb{P}$ (i.e., two correlated graphs $\mathbf{G}(n, p, s)$)

- Goal: hypothesis test with error probability o(1) between:
 - Null model $(A,B)\sim \mathbb{Q}$ (i.e., two independent $\mathbf{G}(n,q)$)
 - Planted model (A, B) ~ ℙ (i.e., two correlated graphs G(n, p, s))
- Look for a degree-*D* polynomial $f : \mathbb{R}^{n*n} \otimes \mathbb{R}^{n*n} \to \mathbb{R}$ such that *f* is "large" under \mathbb{P} and "small" under \mathbb{Q} .

- Goal: hypothesis test with error probability o(1) between:
 - Null model $(A, B) \sim \mathbb{Q}$ (i.e., two independent $\mathbf{G}(n, q)$)
 - Planted model (A, B) ~ ℙ (i.e., two correlated graphs G(n, p, s))
- Look for a degree-D polynomial f : ℝ^{n*n} ⊗ ℝ^{n*n} → ℝ such that f is "large" under ℙ and "small" under ℚ.
- Key items: signal-to-noise ratio

$$\mathsf{SNR}_{\leq D} = \max_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \qquad \qquad \frac{\mathsf{mean in } \mathbb{P}}{\mathsf{fluctuation in } \mathbb{Q}}$$

- Goal: hypothesis test with error probability o(1) between:
 - Null model $(A,B) \sim \mathbb{Q}$ (i.e., two independent $\mathbf{G}(n,q)$)
 - Planted model (A, B) ~ ℙ (i.e., two correlated graphs G(n, p, s))
- Look for a degree-D polynomial f : ℝ^{n*n} ⊗ ℝ^{n*n} → ℝ such that f is "large" under ℙ and "small" under ℚ.
- Key items: signal-to-noise ratio

$$\mathsf{SNR}_{\leq D} = \max_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \qquad \qquad \frac{\mathsf{mean in } \mathbb{P}}{\mathsf{fluctuation in } \mathbb{Q}}$$

• $SNR_{\leq D} \rightarrow \infty$: degree-*D* polynomials succeed;

- Goal: hypothesis test with error probability o(1) between:
 - Null model $(A,B)\sim \mathbb{Q}$ (i.e., two independent $\mathbf{G}(n,q)$)
 - Planted model (A, B) ~ ℙ (i.e., two correlated graphs G(n, p, s))
- Look for a degree-*D* polynomial $f : \mathbb{R}^{n*n} \otimes \mathbb{R}^{n*n} \to \mathbb{R}$ such that *f* is "large" under \mathbb{P} and "small" under \mathbb{Q} .
- Key items: signal-to-noise ratio

$$\mathsf{SNR}_{\leq D} = \max_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \qquad \qquad \frac{\mathsf{mean in } \mathbb{P}}{\mathsf{fluctuation in } \mathbb{Q}}$$

- $SNR_{\leq D} \rightarrow \infty$: degree-*D* polynomials succeed;
- $SNR_{\leq D} = O(1)$: degree-*D* polynomials fail.

$$SNR_{\leq D} = \max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{P}}[f^2]}}$$
 likelihood ratio: $L = d\mathbb{P}/d\mathbb{Q}$

$$\begin{aligned} \mathsf{SNR}_{\leq D} &= \mathsf{max}_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} & \mathsf{likelihood ratio:} \ L = \mathrm{d}\mathbb{P}/\mathrm{d}\mathbb{Q} \\ &= \mathsf{max}_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{Q}}[L \cdot f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} & \langle f, g \rangle = \mathbb{E}_{\mathbb{Q}}[f \cdot g] \end{aligned}$$

$$\begin{aligned} \mathsf{SNR}_{\leq D} &= \mathsf{max}_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} & \text{likelihood ratio: } L = \mathrm{d}\mathbb{P}/\mathrm{d}\mathbb{Q} \\ &= \mathsf{max}_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{Q}}[L \cdot f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} & \langle f, g \rangle = \mathbb{E}_{\mathbb{Q}}[f \cdot g] \\ &= \mathsf{max}_{\mathsf{deg}(f) \leq D} \frac{\langle L, f \rangle}{\|f\|} & \|f\| = \sqrt{\langle f, f \rangle} \end{aligned}$$

医▶ 屈

$$SNR_{\leq D} = \max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \quad \text{likelihood ratio: } L = d\mathbb{P}/d\mathbb{Q}$$
$$= \max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{Q}}[L \cdot f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \quad \langle f, g \rangle = \mathbb{E}_{\mathbb{Q}}[f \cdot g]$$
$$= \max_{\deg(f) \leq D} \frac{\langle L, f \rangle}{\|f\|} \quad \|f\| = \sqrt{\langle f, f \rangle}$$
$$= \|L^{\leq D}\|$$

Maximizer: $f = L^{\leq D}$:= projection of L onto degree-D subspace.

→ Ξ →

$$SNR_{\leq D} = \max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \quad \text{likelihood ratio: } L = d\mathbb{P}/d\mathbb{Q}$$
$$= \max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{Q}}[L \cdot f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} \quad \langle f, g \rangle = \mathbb{E}_{\mathbb{Q}}[f \cdot g]$$
$$= \max_{\deg(f) \leq D} \frac{\langle L, f \rangle}{\|f\|} \qquad \|f\| = \sqrt{\langle f, f \rangle}$$
$$= \|L^{\leq D}\|$$

Maximizer: $f = L^{\leq D}$:= projection of L onto degree-D subspace.

• Since \mathbb{Q} has independent entries, we can directly calculate the projection using orthogonal polynomials w.r.t. \mathbb{Q} .

• For two graphs S_1, S_2 with no isolated vertices, define the polynomial ϕ_{S_1,S_2} by

$$\phi_{S_1,S_2}(\{A_{i,j}\},\{B_{i,j}\}) = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j},$$

where
$$\overline{A}_{i,j} = \frac{A_{i,j}-q}{\sqrt{q(1-q)}}, \overline{B}_{i,j} = \frac{B_{i,j}-q}{\sqrt{q(1-q)}}$$

通 ト (通 ト

• For two graphs S_1, S_2 with no isolated vertices, define the polynomial ϕ_{S_1, S_2} by

$$\phi_{S_1,S_2}(\{A_{i,j}\},\{B_{i,j}\}) = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j},$$

where
$$\overline{A}_{i,j} = \frac{A_{i,j}-q}{\sqrt{q(1-q)}}, \overline{B}_{i,j} = \frac{B_{i,j}-q}{\sqrt{q(1-q)}}$$

{φ_{S1,S2} : |E(S1)| + |E(S2)| ≤ D} constitutes a standard orthogonal basis.

• For two graphs S_1, S_2 with no isolated vertices, define the polynomial ϕ_{S_1, S_2} by

$$\phi_{S_1,S_2}(\{A_{i,j}\},\{B_{i,j}\}) = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j},$$

where
$$\overline{A}_{i,j} = \frac{A_{i,j}-q}{\sqrt{q(1-q)}}, \overline{B}_{i,j} = \frac{B_{i,j}-q}{\sqrt{q(1-q)}}$$

- {φ_{S1,S2} : |E(S1)| + |E(S2)| ≤ D} constitutes a standard orthogonal basis.
- It can be directly calculated that

$$\|L_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} (\mathbb{E}_{\mathbb{P}}[\phi_{S_1,S_2}])^2$$

and

$$\mathbb{E}_{\mathbb{P}}[\phi_{S_1,S_2}] = \begin{cases} \rho^{|E(S_1)|} \cdot \frac{\operatorname{Aut}(S_1)}{n(n-1)\cdots(n-|V(S_1)|+1)}, & \text{if } S_1 \cong S_2, \\ 0, & \text{otherwise.} \end{cases}$$

The problem reduces to controlling

$$\sum_{S_1 \cong S_2, |E(S_1)| + |E(S_2)| \le D} \rho^{2|E(S_1)|} \cdot \frac{\operatorname{Aut}(S_1)^2}{[n(n-1)\cdots(n-|V(S_1)|+1)]^2}$$

The problem reduces to controlling

$$\sum_{S_1 \cong S_2, |E(S_1)| + |E(S_2)| \le D} \rho^{2|E(S_1)|} \cdot \frac{\operatorname{Aut}(S_1)^2}{[n(n-1)\cdots(n-|V(S_1)|+1)]^2}$$
$$= \sum_{|E(\mathbf{H})| \le D/2} \rho^{2|E(\mathbf{H})|} \cdot \frac{\operatorname{Aut}(\mathbf{H})^2 \cdot \#\{S_1 \cong S_2 \cong \mathbf{H}\}}{[n(n-1)\cdots(n-|V(\mathbf{H})|+1)]^2}$$

The problem reduces to controlling

$$\sum_{S_1 \cong S_2, |E(S_1)|+|E(S_2)| \le D} \rho^{2|E(S_1)|} \cdot \frac{\operatorname{Aut}(S_1)^2}{[n(n-1)\cdots(n-|V(S_1)|+1)]^2}$$

$$=\sum_{|E(\mathbf{H})|\leq D/2}\rho^{2|E(\mathbf{H})|}\cdot\frac{\operatorname{Aut}(\mathbf{H})^{2}\cdot\#\{S_{1}\cong S_{2}\cong \mathbf{H}\}}{[n(n-1)\cdots(n-|V(\mathbf{H})|+1)]^{2}}$$

$$= \sum_{|E(\mathbf{H})| \le D/2} \rho^{2|E(\mathbf{H})|}$$

The problem reduces to controlling

$$\sum_{S_1 \cong S_2, |E(S_1)|+|E(S_2)| \le D} \rho^{2|E(S_1)|} \cdot \frac{\operatorname{Aut}(S_1)^2}{[n(n-1)\cdots(n-|V(S_1)|+1)]^2}$$

$$= \sum_{|E(\mathbf{H})| \le D/2} \rho^{2|E(\mathbf{H})|} \cdot \frac{\operatorname{Aut}(\mathbf{H})^2 \cdot \#\{S_1 \cong S_2 \cong \mathbf{H}\}}{[n(n-1)\cdots(n-|V(\mathbf{H})|+1)]^2}$$

$$=\sum_{|E(\mathbf{H})|\leq D/2}\rho^{2|E(\mathbf{H})}$$

• It is O(1) provided that $D = O(\rho^{-1})$, using the fact that

$$\#\big\{|E(\mathbf{H})|=k\big\} \le \sum_{\ell=1}^{2k} \#\big\{|E(\mathbf{H})|=k, |V(\mathbf{H})|=\ell\big\} \le \sum_{\ell=1}^{2k} \binom{\ell(\ell-1)/2}{k}$$

• Same proof as dense regime?

- Same proof as dense regime?
- Unfortunately, we still have

$$\mathsf{SNR}_{\leq D} = \|L_{\leq D}\|^2 = \sum_{|E(\mathbf{H})| \leq D/2} \rho^{2|E(\mathbf{H})|}$$

which blows-up for general $\rho < \sqrt{\alpha}$.

- Same proof as dense regime?
- Unfortunately, we still have

$$SNR_{\le D} = \|L_{\le D}\|^2 = \sum_{|E(\mathbf{H})| \le D/2} \rho^{2|E(\mathbf{H})|}$$

which blows-up for general $\rho < \sqrt{\alpha}$.

 Observation: the main contribution of ||L_{≤D}|| comes from counting "very dense" subgraphs;

- Same proof as dense regime?
- Unfortunately, we still have

$$SNR_{\leq D} = \|L_{\leq D}\|^2 = \sum_{|E(\mathbf{H})| \leq D/2} \rho^{2|E(\mathbf{H})|}$$

which blows-up for general $\rho < \sqrt{\alpha}$.

- Observation: the main contribution of ||L_{≤D}|| comes from counting "very dense" subgraphs;
- However, since $q = n^{-1+o(1)}$, with high probability all subgraphs (with at most *D* edges) of (G_1, G_2) should have "low" edge-density.

- Same proof as dense regime?
- Unfortunately, we still have

$$SNR_{\leq D} = \|L_{\leq D}\|^2 = \sum_{|E(\mathbf{H})| \leq D/2} \rho^{2|E(\mathbf{H})|}$$

which blows-up for general $\rho < \sqrt{\alpha}$.

- Observation: the main contribution of ||L_{≤D}|| comes from counting "very dense" subgraphs;
- However, since $q = n^{-1+o(1)}$, with high probability all subgraphs (with at most D edges) of (G_1, G_2) should have "low" edge-density.
- This inspired us to work with a truncated version of $\mathbb P$ rather than $\mathbb P$ itself.

• Recall that (G_1, G_2) are subsampled from the parent graph G_0

- Recall that (G_1, G_2) are subsampled from the parent graph G_0
- Given a graph H = H(V, E), define

 $\Phi(H) = n^{|V(H)|} q^{|E(H)|} \ge \mathbb{E}[\text{number of } H \text{ in } \mathcal{G}(n,q)]$

- Recall that (G_1, G_2) are subsampled from the parent graph G_0
- Given a graph H = H(V, E), define

 $\Phi(H) = n^{|V(H)|} q^{|E(H)|} \ge \mathbb{E}[\text{number of } H \text{ in } \mathcal{G}(n,q)]$

H is said to be bad if Φ(H) < (log n)⁻¹. Furthermore, we say a graph is admissible if it contains no bad subgraph, and we say it is inadimissible otherwise. (H admissible ⇒ |E(H)| ≤ (1 + o(1))|V(H)|)

- Recall that (G_1, G_2) are subsampled from the parent graph G_0
- Given a graph H = H(V, E), define

 $\Phi(H) = n^{|V(H)|} q^{|E(H)|} \ge \mathbb{E}[\text{number of } H \text{ in } \mathcal{G}(n,q)]$

- H is said to be bad if Φ(H) < (log n)⁻¹. Furthermore, we say a graph is admissible if it contains no bad subgraph, and we say it is inadimissible otherwise. (H admissible ⇒ |E(H)| ≤ (1 + o(1))|V(H)|)
- Denote *E* for the event that G₀ does not contain any bad subgraph with no more than D² vertices and P' = P(· | *E*).

御 とくぼとくほとう

- Recall that (G_1, G_2) are subsampled from the parent graph G_0
- Given a graph H = H(V, E), define

 $\Phi(H) = n^{|V(H)|} q^{|E(H)|} \ge \mathbb{E}[\text{number of } H \text{ in } \mathcal{G}(n,q)]$

- H is said to be bad if Φ(H) < (log n)⁻¹. Furthermore, we say a graph is admissible if it contains no bad subgraph, and we say it is inadimissible otherwise. (H admissible ⇒ |E(H)| ≤ (1 + o(1))|V(H)|)
- Denote *E* for the event that G₀ does not contain any bad subgraph with no more than D² vertices and P' = P(· | *E*).
- Our goal is to prove the following:

伺 ト イ ほ ト イ ほ トー

- Recall that (G_1, G_2) are subsampled from the parent graph G_0
- Given a graph H = H(V, E), define

 $\Phi(H) = n^{|V(H)|} q^{|E(H)|} \ge \mathbb{E}[\text{number of } H \text{ in } \mathcal{G}(n,q)]$

- H is said to be bad if Φ(H) < (log n)⁻¹. Furthermore, we say a graph is admissible if it contains no bad subgraph, and we say it is inadimissible otherwise. (H admissible ⇒ |E(H)| ≤ (1 + o(1))|V(H)|)
- Denote *E* for the event that G₀ does not contain any bad subgraph with no more than D² vertices and ℙ' = ℙ(· | *E*).
- Our goal is to prove the following:
 - $\mathsf{TV}(\mathbb{P}, \mathbb{P}') = o(1)$ (first moment method).

・ 同 ト ・ 足 ト ・ 足 ト …

- Recall that (G_1, G_2) are subsampled from the parent graph G_0
- Given a graph H = H(V, E), define

 $\Phi(H) = n^{|V(H)|} q^{|E(H)|} \ge \mathbb{E}[\text{number of } H \text{ in } \mathcal{G}(n,q)]$

- H is said to be bad if Φ(H) < (log n)⁻¹. Furthermore, we say a graph is admissible if it contains no bad subgraph, and we say it is inadimissible otherwise. (H admissible ⇒ |E(H)| ≤ (1 + o(1))|V(H)|)
- Denote *E* for the event that G₀ does not contain any bad subgraph with no more than D² vertices and P' = P(· | *E*).
- Our goal is to prove the following:
 - $\mathsf{TV}(\mathbb{P}, \mathbb{P}') = o(1)$ (first moment method).

•
$$\operatorname{SNR}'_{\leq D} = \max_{\operatorname{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}'}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^2]}} = O(1).$$

・ 同 ト ・ 足 ト ・ 足 ト …

• Define $L' = d\mathbb{P}'/d\mathbb{Q}$, we still have

$$(\mathsf{SNR}'_{\leq D})^2 = \|L'_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} \left(\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}]\right)^2$$

where $\phi_{S_1,S_2} = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j}$.

★ 20 ★ 4 20 ★

• Define $L' = d\mathbb{P}'/d\mathbb{Q}$, we still have

$$(\mathsf{SNR}'_{\leq D})^2 = \|L'_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} \left(\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}]\right)^2$$

where $\phi_{S_1,S_2} = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j}$.

• Our intuition to bound $SNR'_{\leq D}$:

• Define $L' = \mathrm{d}\mathbb{P}'/\mathrm{d}\mathbb{Q}$, we still have

$$(\mathsf{SNR}'_{\leq D})^2 = \|L'_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} \left(\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}]\right)^2$$

where $\phi_{S_1,S_2} = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j}$.

- Our intuition to bound $SNR'_{\leq D}$:
 - For S₁ or S₂ inadmissible, since (G₁, G₂) do not contain inadmissible subgraph under P', we expect that E_{P'}[φ_{S1,S2}] is negligible.

• Define $L' = \mathrm{d}\mathbb{P}'/\mathrm{d}\mathbb{Q}$, we still have

$$(\mathsf{SNR}'_{\leq D})^2 = \|L'_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} \left(\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}]\right)^2$$

where $\phi_{S_1,S_2} = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j}$.

• Our intuition to bound $SNR'_{\leq D}$:

- Solution For S₁ or S₂ inadmissible, since (G₁, G₂) do not contain inadmissible subgraph under P', we expect that E_{P'}[φ_{S1,S2}] is negligible.
- **2** For S_1, S_2 admissible, since we condition on a typical event we expect that $\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}] \approx \mathbb{E}_{\mathbb{P}}[\phi_{S_1,S_2}]$.

• Define $L' = \mathrm{d}\mathbb{P}'/\mathrm{d}\mathbb{Q}$, we still have

$$(\mathsf{SNR}'_{\leq D})^2 = \|L'_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} \left(\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}]\right)^2$$

where $\phi_{S_1,S_2} = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j}$.

• Our intuition to bound SNR'_{<D}:

- Solution For S₁ or S₂ inadmissible, since (G₁, G₂) do not contain inadmissible subgraph under P', we expect that E_{P'}[φ_{S1,S2}] is negligible.
- **2** For S_1, S_2 admissible, since we condition on a typical event we expect that $\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}] \approx \mathbb{E}_{\mathbb{P}}[\phi_{S_1,S_2}]$.
- Onder previous two assumption, direct calculation yields

$$(SNR'_{\leq D})^2 \approx \sum_{E(\mathbf{H}) \leq D/2, \mathbf{H} \text{ admissible}} \rho^{2|E(\mathbf{H})|}$$
The proof in sparse regime (sketch)

• Define $L' = \mathrm{d}\mathbb{P}'/\mathrm{d}\mathbb{Q}$, we still have

$$(\mathsf{SNR}'_{\leq D})^2 = \|L'_{\leq D}\|^2 = \sum_{|E(S_1)|+|E(S_2)|\leq D} \left(\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}]\right)^2$$

where $\phi_{S_1,S_2} = \prod_{(i,j)\in E(S_1)} \overline{A}_{i,j} \prod_{(i,j)\in E(S_2)} \overline{B}_{i,j}$.

- Our intuition to bound $SNR'_{\leq D}$:
 - Solution For S₁ or S₂ inadmissible, since (G₁, G₂) do not contain inadmissible subgraph under P', we expect that E_{P'}[φ_{S1,S2}] is negligible.
 - **2** For S_1, S_2 admissible, since we condition on a typical event we expect that $\mathbb{E}_{\mathbb{P}'}[\phi_{S_1,S_2}] \approx \mathbb{E}_{\mathbb{P}}[\phi_{S_1,S_2}]$.
 - Onder previous two assumption, direct calculation yields

$$(SNR'_{\leq D})^2 \approx \sum_{E(\mathbf{H}) \leq D/2, \mathbf{H} \text{ admissible}} \rho^{2|E(\mathbf{H})|}$$

We can show the number of admissible graphs with k edges is approximately α^{-k} where α is the Otter's constant, thus
(*) = O(1) when ρ < √α.

 What if we consider partial matching (i.e., recover a positive fraction of π_{*})?

- What if we consider partial matching (i.e., recover a positive fraction of π_{*})?
- It is "easier" than exact matching and intuitively "harder" than detection, so we expect the same result holds for partial matching.

- What if we consider partial matching (i.e., recover a positive fraction of π_{*})?
- It is "easier" than exact matching and intuitively "harder" than detection, so we expect the same result holds for partial matching.
- The partial recovery algorithm is established in [Ganassali-Massoulié-Lelarge '20+,22+]

- What if we consider partial matching (i.e., recover a positive fraction of π_{*})?
- It is "easier" than exact matching and intuitively "harder" than detection, so we expect the same result holds for partial matching.
- The partial recovery algorithm is established in [Ganassali-Massoulié-Lelarge '20+,22+]
- To prove the low-degree hardness for recovery problems, [Wein-Schramm '20] proposed the following framework: try to show that

$$\max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}|\pi_*(1)=1}[f]}{\sqrt{\mathbb{E}_{\mathbb{P}}[f^2]}} = O(1)$$

- What if we consider partial matching (i.e., recover a positive fraction of π_{*})?
- It is "easier" than exact matching and intuitively "harder" than detection, so we expect the same result holds for partial matching.
- The partial recovery algorithm is established in [Ganassali-Massoulié-Lelarge '20+,22+]
- To prove the low-degree hardness for recovery problems, [Wein-Schramm '20] proposed the following framework: try to show that

$$\max_{\deg(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}|\pi_*(1)=1}[f]}{\sqrt{\mathbb{E}_{\mathbb{P}}[f^2]}} = O(1)$$

• We can control $\mathbb{E}_{\mathbb{P}|\pi_*(1)=1}[f]$ in the similar manner but we don't know how to control $\mathbb{E}_{\mathbb{P}}[f^2]$.

1. [DD23a] J. Ding and H. Du. Detection threshold for correlated Erdős-Rényi graphs via densest subgraph. In *IEEE Transactions on Information Theory*, 69(8):5289–5298, 2023.

2. [DD23b] J. Ding and H. Du. Matching recovery threshold for correlated random graphs. In *Annals of Statistics*, 51(4):1718–1743, 2023.

3. [DDL23+] J. Ding, H. Du and Z. Li. Low-degree hardness for detection in correlated Erdős-Rényi graphs. Preprint, arXiv: 2311.15931.

4. [DL22+] J. Ding and Z. Li. A polynomial time iterative algorithm for matching Gaussian matrices with non-vanishing correlation. Preprint, arXiv:2212.13677.

5. [DL23+] J. Ding and Z. Li. A polynomial-time iterative algorithm for random graph matching with non-vanishing correlation. Preprint, arXiv:2306.00266.

6. [Hopkins18] S. Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell University, 2018.

7. [MWXY21+] C. Mao, Y. Wu, J. Xu, and S. H. Yu. Testing network correlation efficiently via counting trees. to appear in *Annals of Statistics*.

8. [MWXY23] C. Mao, Y. Wu, J. Xu, and S. H. Yu. Random graph matching at Otter's threshold via counting chandeliers. In *STOC 2023*.

9. [WXY22] Y. Wu, J. Xu and S. H. Yu, Settling the sharp reconstruction thresholds of random graph matching. In *IEEE Transactions on Information Theory*, 68(8):5391-5417, 2022.

10. [WXY23] Y. Wu, J. Xu and S. H. Yu, Testing correlation of unlabeled random graphs. In *Annals of Applied Probability*, 33(4): 2519-2558, 2023.

ヘロト 人間ト 人足ト 人足トー

Ð

Thank you!

浸♪

⇒ ▶