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Application: network de-anonymization

Figure 1: Picture courtesy of R.Srikant

Successfully de-anonymize Netflix by matching it to IMDB.
[Narayanan-Shmatikov ’08]

Correctly identified 30.8% of node mappings between Twitter and
Flickr. [Narayanan-Shmatikov ’09]
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An idealized model: correlated Erdős-Rényi graphs

G1 and G2 are Erdős-Rényi graphs with edge-density q = ps, and
edge-correlation ρ = s(1−p)

1−ps
.

Two basic problems regarding this model: (1) the detection problem, i.e.,
testing P against the law of two independent Erdős-Rényi graphs on with
edge density q; (2) the matching problem, i.e., recovering the latent
matching π∗ from the adjacency matrices (A,B) of (G1,G2).
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Quick overview on information threshold

[Wu-Xu-Yu ’20,21]: progress based analyzing MLE (the
maximum common graph).

Results: determine the exact information threshold for exact
recovery; Determine the information threshold for
partial-recovery and detection in the dense region (p = no(1))
exactly and in the non-dense region (p = n−c+o(1) where
0 < c < 1) up to constants.

[Ding-Du ’23a,23b]: determine the exact information
threshold for detection and partial-recovery in the non-dense
region via a modified statistics based on densest subgraphs.
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Efficient algorithms

Progressively improved algorithms have been obtained by
commmunity (e.g. [Dai-Cullina-Kiyavash-Grossglauser ’18],
[Barak-Chou-Lei-Schramm-Sheng ’19], [Ding-Ma-Wu-Xu ’21],
[Mao-Rudelson-Tikhomirov ’21], etc.)

The state-of-the-art algorithm:

[Mao-Wu-Xu-Yu ’21+,23]: polynomial time algorithm for
detection/matching when q > log n

n and correlation ρ >
√
α

where α ≈ 0.338 is the Otter’s constant, based on counting
carefully curated family of rooted trees.
[Ding-L. ’22+,23+]: polynomial time iterative algorithm for
matching when p ≥ n−1+δ and correlation ρ non-vanishing.
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Information-computation gap

regime Info, Detection Info, ExaMatch Alg

q = no(1) ρ2 > log n
nq log q−1 ρ2 > log n

nq log q−1 ρ = Ω(1)

q = n−1+c+o(1) ρ2 > λ∗
nq ρ2 > log n

nq ρ = Ω(1)

q = n−1+o(1) ρ2 >
(

1
nq ∧ u0

)
ρ2 > log n

nq ρ2 > α

λ∗ (resp. u0) are constants that can be determined in
[DD23a] (resp. [WXY23]); α is the Otter’s constant.

Information-computation gaps: a major challenge in many
random combinatorial optimization problems.

Question: how to give lower bounds on computational
complexity for problems with random input?
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6 / 20



Information-computation gap

regime Info, Detection Info, ExaMatch Alg

q = no(1) ρ2 > log n
nq log q−1 ρ2 > log n

nq log q−1 ρ = Ω(1)

q = n−1+c+o(1) ρ2 > λ∗
nq ρ2 > log n

nq ρ = Ω(1)

q = n−1+o(1) ρ2 >
(

1
nq ∧ u0

)
ρ2 > log n

nq ρ2 > α

λ∗ (resp. u0) are constants that can be determined in
[DD23a] (resp. [WXY23]); α is the Otter’s constant.

Information-computation gaps: a major challenge in many
random combinatorial optimization problems.

Question: how to give lower bounds on computational
complexity for problems with random input?

Zhangsong Li
Low-degree Hardness for Detection in Correlated Erdős-Rényi Graphs
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Low-degree polynomial method

The low-degree polynomial method, originated from
sum-of-squares literature, provides a framework for predicting
and explaining computational hardness in average-case.

It studies a restricted class of algorithms: low-degree
polynomial algorithms.

Based on multivariate f : RN → RM with degree ≤ D.
Usually low-degree means D = O(logN).
In some cases (e.g. [Montanari-Wein’ 22+]), the “optimal”
algorithm is captured by a degree-O(1) polynomial.

Some low-degree algorithms:

Spectral methods (power iteration)
Approximate message passing (AMP)
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Optimality of low-degree polynomials

Low-degree polynomials seem to be optimal for many
problems! E.g., for planted clique, sparse PCA, community
detection, tensor PCA, spiked Wigner/Wishart, planted
submatrix, planted dense subgraph, etc. It is the case that

The best known poly-time algorithms are captured by
low-degree polynomials (spectral/AMP/. . .);
Low-degree polynomials fail in the conjectured “hard” regime.

[Hopkins’18] “Low-degree conjecture” (informal): for
“natural” problems, the failure of degree-D polynomials

implies the failure of all algorithms with running time eΘ̃(D).
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Our Results

Theorem (Ding-Du-L., informal)

There is evidence suggesting that algorithms based on polynomials of
degree O(ρ−1) fail for detection in the correlated Erdős-Rényi graph
model.

Furthermore, if q, ρ satisfies nq = no(1) and ρ2 < α− ε for some arbitrary
constant ε > 0 (where α ≈ 0.338 denotes the Otter’s constant), then
there is evidence suggesting that algorithms based on polynomials of
degree D fail for detection as long as

logD = o

(
log n

log nq
∧
√
log n

)
.

Also suggest that the (exact) graph matching problem is computationally
hard in the aforementioned regimes.

In particular, suggest that the algorithms in [MWXY21+,23]
[DL22+,23+] have nearly reached the limit of efficient algorithms.
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model.

Furthermore, if q, ρ satisfies nq = no(1) and ρ2 < α− ε for some arbitrary
constant ε > 0 (where α ≈ 0.338 denotes the Otter’s constant), then
there is evidence suggesting that algorithms based on polynomials of
degree D fail for detection as long as

logD = o

(
log n

log nq
∧
√
log n

)
.

Also suggest that the (exact) graph matching problem is computationally
hard in the aforementioned regimes.

In particular, suggest that the algorithms in [MWXY21+,23]
[DL22+,23+] have nearly reached the limit of efficient algorithms.

Zhangsong Li
Low-degree Hardness for Detection in Correlated Erdős-Rényi Graphs
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Comparison between algorithms and hardness

Algorithms Hardness

Detection
dense regime

ρ = Ω(1);D = O(1)
[DL23+]

ρ = o(1);D = O(ρ−1)

Detection
sparse regime

ρ >
√
α;D = O(1)

[MWXY21+]
ρ <

√
α; logD = o(d(n, q))

ExaMatch
dense regime

ρ = Ω(1);D = O(1)
[DL23+]

ρ = o(1);D = O(ρ−1)

ExaMatch
sparse regime

ρ >
√
α;D = O(log n)
[MWXY23]

ρ <
√
α; logD = o(d(n, q))

d(n, q) = log n
log nq

∧
√
log n.

α ≈ 0.338 is the Otter’s constant.
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Low-degree framework for detection

Goal: hypothesis test with error probability o(1) between:

Null model (A,B) ∼ Q (i.e., two independent G(n, q))
Planted model (A,B) ∼ P (i.e., two correlated graphs
G(n, p, s))

Look for a degree-D polynomial f : Rn∗n ⊗ Rn∗n → R such
that f is “large” under P and “small” under Q.

Key items: signal-to-noise ratio

SNR≤D = max
deg(f )≤D

EP[f ]√
EQ[f 2]

mean in P
fluctuation in Q

SNR≤D → ∞: degree-D polynomials succeed;
SNR≤D = O(1): degree-D polynomials fail.
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Low-degree framework for detection

SNR≤D = maxdeg(f )≤D
EP[f ]√
EQ[f 2]

likelihood ratio: L = dP/dQ

= maxdeg(f )≤D
EQ[L·f ]√
EQ[f 2]

⟨f , g⟩ = EQ[f · g ]

= maxdeg(f )≤D
⟨L,f ⟩
∥f ∥ ∥f ∥ =

√
⟨f , f ⟩

= ∥L≤D∥

Maximizer: f = L≤D := projection of L onto degree-D subspace.

Since Q has independent entries, we can directly calculate the
projection using orthogonal polynomials w.r.t. Q.
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Warm up: the proof in dense regime

For two graphs S1,S2 with no isolated vertices, define the
polynomial ϕS1,S2 by

ϕS1,S2

(
{Ai,j}, {Bi,j}

)
=

∏
(i,j)∈E(S1)

Ai,j

∏
(i,j)∈E(S2)

B i,j ,

where Ai,j =
Ai,j−q√
q(1−q)

,B i,j =
Bi,j−q√
q(1−q)

.

{ϕS1,S2 : |E (S1)|+ |E (S2)| ≤ D} constitutes a standard orthogonal
basis.

It can be directly calculated that∥∥L≤D

∥∥2 = ∑
|E(S1)|+|E(S2)|≤D

(
EP[ϕS1,S2 ]

)2
and

EP[ϕS1,S2 ] =

{
ρ|E(S1)| · Aut(S1)

n(n−1)···(n−|V (S1)|+1) , if S1 ∼= S2,

0 , otherwise.
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Warm up: the proof in dense regime

The problem reduces to controlling

∑
S1

∼=S2,|E(S1)|+|E(S2)|≤D

ρ2|E(S1)| · Aut(S1)
2

[n(n − 1) · · · (n − |V (S1)|+ 1)]2

=
∑

|E(H)|≤D/2

ρ2|E(H)| · Aut(H)2 ·#{S1 ∼= S2 ∼= H}
[n(n − 1) · · · (n − |V (H)|+ 1)]2

=
∑

|E(H)|≤D/2

ρ2|E(H)|

It is O(1) provided that D = O(ρ−1), using the fact that

#
{
|E (H)| = k

}
≤

2k∑
ℓ=1

#
{
|E (H)| = k, |V (H)| = ℓ

}
≤

2k∑
ℓ=1

(
ℓ(ℓ− 1)/2

k

)
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The proof in sparse regime

Same proof as dense regime?

Unfortunately, we still have

SNR≤D = ∥L≤D∥2 =
∑

|E(H)|≤D/2

ρ2|E(H)|

which blows-up for general ρ <
√
α.

Observation: the main contribution of ∥L≤D∥ comes from counting
“very dense” subgraphs;

However, since q = n−1+o(1), with high probability all subgraphs
(with at most D edges) of (G1,G2) should have “low” edge-density.

This inspired us to work with a truncated version of P rather than P
itself.
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The proof in sparse regime: truncation

Recall that (G1,G2) are subsampled from the parent graph G0

Given a graph H = H(V ,E ), define

Φ(H) = n|V (H)|q|E(H)| ≥ E[number of H in G(n, q)]

H is said to be bad if Φ(H) < (log n)−1. Furthermore, we say
a graph is admissible if it contains no bad subgraph, and we
say it is inadimissible otherwise. (H admissible
=⇒ |E (H)| ≤ (1 + o(1))|V (H)|)
Denote E for the event that G0 does not contain any bad
subgraph with no more than D2 vertices and P′ = P(· | E).
Our goal is to prove the following:

TV(P,P′) = o(1) (first moment method).

SNR′
≤D = maxdeg(f )≤D

EP′ [f ]√
EQ[f 2]

= O(1).
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16 / 20



The proof in sparse regime: truncation

Recall that (G1,G2) are subsampled from the parent graph G0

Given a graph H = H(V ,E ), define

Φ(H) = n|V (H)|q|E(H)| ≥ E[number of H in G(n, q)]

H is said to be bad if Φ(H) < (log n)−1. Furthermore, we say
a graph is admissible if it contains no bad subgraph, and we
say it is inadimissible otherwise. (H admissible
=⇒ |E (H)| ≤ (1 + o(1))|V (H)|)

Denote E for the event that G0 does not contain any bad
subgraph with no more than D2 vertices and P′ = P(· | E).
Our goal is to prove the following:

TV(P,P′) = o(1) (first moment method).

SNR′
≤D = maxdeg(f )≤D

EP′ [f ]√
EQ[f 2]

= O(1).

Zhangsong Li
Low-degree Hardness for Detection in Correlated Erdős-Rényi Graphs
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The proof in sparse regime (sketch)

Define L′ = dP′/dQ, we still have

(SNR′
≤D)

2 = ∥L′≤D∥2 =
∑

|E(S1)|+|E(S2)|≤D

(
EP′ [ϕS1,S2 ]

)2
where ϕS1,S2 =

∏
(i,j)∈E(S1)

Ai,j

∏
(i,j)∈E(S2)

B i,j .

Our intuition to bound SNR′
≤D :

1 For S1 or S2 inadmissible, since (G1,G2) do not contain inadmissible
subgraph under P′, we expect that EP′ [ϕS1,S2 ] is negligible.

2 For S1,S2 admissible, since we condition on a typical event we
expect that EP′ [ϕS1,S2 ] ≈ EP[ϕS1,S2 ].

3 Under previous two assumption, direct calculation yields

(SNR′
≤D)

2 ≈
∑

E(H)≤D/2,H admissible

ρ2|E(H)|

4 We can show the number of admissible graphs with k edges is
approximately α−k where α is the Otter’s constant, thus
(∗) = O(1) when ρ <

√
α.
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Ai,j

∏
(i,j)∈E(S2)

B i,j .

Our intuition to bound SNR′
≤D :

1 For S1 or S2 inadmissible, since (G1,G2) do not contain inadmissible
subgraph under P′, we expect that EP′ [ϕS1,S2 ] is negligible.

2 For S1, S2 admissible, since we condition on a typical event we
expect that EP′ [ϕS1,S2 ] ≈ EP[ϕS1,S2 ].

3 Under previous two assumption, direct calculation yields

(SNR′
≤D)

2 ≈
∑

E(H)≤D/2,H admissible

ρ2|E(H)|

4 We can show the number of admissible graphs with k edges is
approximately α−k where α is the Otter’s constant, thus
(∗) = O(1) when ρ <

√
α.
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Future questions

What if we consider partial matching (i.e., recover a positive
fraction of π∗)?

It is “easier” than exact matching and intuitively “harder”
than detection, so we expect the same result holds for partial
matching.

The partial recovery algorithm is established in
[Ganassali-Massoulié-Lelarge ’20+,22+]

To prove the low-degree hardness for recovery problems,
[Wein-Schramm ’20] proposed the following framework: try to
show that

max
deg(f )≤D

EP|π∗(1)=1[f ]√
EP[f 2]

= O(1)

We can control EP|π∗(1)=1[f ] in the similar manner but we
don’t know how to control EP[f

2].
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[Ganassali-Massoulié-Lelarge ’20+,22+]

To prove the low-degree hardness for recovery problems,
[Wein-Schramm ’20] proposed the following framework: try to
show that

max
deg(f )≤D

EP|π∗(1)=1[f ]√
EP[f 2]

= O(1)

We can control EP|π∗(1)=1[f ] in the similar manner but we
don’t know how to control EP[f

2].

Zhangsong Li
Low-degree Hardness for Detection in Correlated Erdős-Rényi Graphs
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Thank you!
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