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Linked[T}].

-

Figure 1: Picture courtesy of R.Srikant

@ Successfully de-anonymize Netflix by matching it to IMDB.
[Narayanan-Shmatikov '08]

@ Correctly identified 30.8% of node mappings between Twitter and
Flickr. [Narayanan-Shmatikov '09]
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An idealized model: correlated Erdos-Rényi graphs

@ G and G, are Erdos-Rényi graphs with edge-density ¢ = ps, and
edge-correlation p = sil_—;‘s’).

@ Two basic problems regarding this model: (1) the detection problem, i.e.,
testing P against the law of two independent Erdés-Rényi graphs on with
edge density g; (2) the matching problem, i.e., recovering the latent

matching 7. from the adjacency matrices (A, B) of (G1, G2).
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Quick overview on information threshold

o [Wu-Xu-Yu '20,21]: progress based analyzing MLE (the
maximum common graph).

@ Results: determine the exact information threshold for exact
recovery; Determine the information threshold for
partial-recovery and detection in the dense region (p = n°(1))
exactly and in the non-dense region (p = n—cto(l) where
0 < ¢ < 1) up to constants.

@ [Ding-Du '23a,23b]: determine the exact information
threshold for detection and partial-recovery in the non-dense
region via a modified statistics based on densest subgraphs.
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Efficient algorithms

@ Progressively improved algorithms have been obtained by
commmunity (e.g. [Dai-Cullina-Kiyavash-Grossglauser '18],
[Barak-Chou-Lei-Schramm-Sheng '19], [Ding-Ma-Wu-Xu '21],
[Mao-Rudelson-Tikhomirov '21], etc.)
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@ Progressively improved algorithms have been obtained by
commmunity (e.g. [Dai-Cullina-Kiyavash-Grossglauser '18],
[Barak-Chou-Lei-Schramm-Sheng '19], [Ding-Ma-Wu-Xu '21],
[Mao-Rudelson-Tikhomirov '21], etc.)

@ The state-of-the-art algorithm:

o [Mao-Wu-Xu-Yu '21+,23]: polynomial time algorithm for
detection/matching when g > '°§" and correlation p > /a
where o = 0.338 is the Otter's constant, based on counting
carefully curated family of rooted trees.

o [Ding-L. '22+4,23+]: polynomial time iterative algorithm for
matching when p > n=1*% and correlation p non-vanishing.
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Information-computation gap

regime Info, Detection | Info, ExaMatch Alg
q= ne() p2 N nq:zigﬂ P2 > nq||2§271 D= Q(l)
g=nttre® [ 2> 2 P> | p=00)
g=n"tte@ | ;2> (niq A ) P> > I",% P> >a

@ )\, (resp. up) are constants that can be determined in
[DD23a] (resp. [WXY23]); « is the Otter's constant.
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Information-computation gap

regime Info, Detection | Info, ExaMatch Alg
q=n"" | P> kg | P> g | p=9(1)
q = n—LreFo(d) 02 > % 02 > Iofqn p=Q(1)
q= n—1+o(1) p2 N (niq A Uo) p2 N Ior;gqn p2 > a

@ )\, (resp. up) are constants that can be determined in
[DD23a] (resp. [WXY23]); « is the Otter's constant.

@ Information-computation gaps: a major challenge in many
random combinatorial optimization problems.

@ Question: how to give lower bounds on computational
complexity for problems with random input?
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Low-degree polynomial method

@ The low-degree polynomial method, originated from
sum-of-squares literature, provides a framework for predicting
and explaining computational hardness in average-case.

@ It studies a restricted class of algorithms: low-degree
polynomial algorithms.

o Based on multivariate f : RN — RM with degree < D.

o Usually low-degree means D = O(log N).

o In some cases (e.g. [Montanari-Wein' 22+]), the “optimal”
algorithm is captured by a degree-O(1) polynomial.

@ Some low-degree algorithms:

o Spectral methods (power iteration)
o Approximate message passing (AMP)
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Optimality of low-degree polynomials

@ Low-degree polynomials seem to be optimal for many
problems! E.g., for planted clique, sparse PCA, community
detection, tensor PCA, spiked Wigner/Wishart, planted
submatrix, planted dense subgraph, etc. It is the case that

o The best known poly-time algorithms are captured by
low-degree polynomials (spectral/AMP/...);
o Low-degree polynomials fail in the conjectured “hard” regime.

@ [Hopkins'18] “Low-degree conjecture” (informal): for
“natural” problems, the failure of degree-D polynomials

implies the failure of all algorithms with running time e®(P),
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Our Results

Theorem (Ding-Du-L., informal)

There is evidence suggesting that algorithms based on polynomials of
degree O(p~1) fail for detection in the correlated Erdés-Rényi graph
model.

Furthermore, if q, p satisfies ng = n°Y) and p?> < o — ¢ for some arbitrary
constant € > 0 (where o = 0.338 denotes the Otter’s constant), then
there is evidence suggesting that algorithms based on polynomials of
degree D fail for detection as long as

|
IogD:o( St A Iogn> .
log nq
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Our Results

Theorem (Ding-Du-L., informal)

There is evidence suggesting that algorithms based on polynomials of
degree O(p~1) fail for detection in the correlated Erdés-Rényi graph
model.

Furthermore, if q, p satisfies ng = n°Y) and p?> < o — ¢ for some arbitrary
constant € > 0 (where o = 0.338 denotes the Otter’s constant), then
there is evidence suggesting that algorithms based on polynomials of
degree D fail for detection as long as

|
IogD:o( St A Iogn> .
log nq

@ Also suggest that the (exact) graph matching problem is computationally
hard in the aforementioned regimes.

@ In particular, suggest that the algorithms in [MWXY21+,23]
[DL22+,23+] have nearly reached the limit of efficient algorithms.
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Comparison between algorithms and hardness

Algorithms Hardness
Detection p=Q(1); D= 0(1) B A 1
dense regime [DL23+] p=0(1):D=0(")
Detection p>+/a; D= 0(1) ) .
sparse regime [MWXY21+] p < Vailog D = o(d(n, q))

ExaMatch p=9(1); D= 0(1) p=o(1);D=0(p")

dense regime [DL23+]
ExaMatch p > /a; D = O(log n) ] _
sparse regime [MWXY23] p < Va;log D = o(d(n, q))

@ d(n,q) = IL"ggn'; A +/log n.

@ « ~ 0.338 is the Otter's constant.
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Low-degree framework for detection

@ Goal: hypothesis test with error probability o(1) between:

o Null model (A, B) ~ Q (i.e., two independent G(n, q))
o Planted model (A, B) ~ P (i.e., two correlated graphs

G(n,p,s))
@ Look for a degree-D polynomial f : R™" @ R™" — R such
that f is “large” under P and “small” under Q.

@ Key items: signal-to-noise ratio

SNRom —  max Ep[f] mean in P
=b= deg(f)<D /Eq[f?] fluctuation in Q

o SNR<p — oco: degree-D polynomials succeed;
o SNR<p = O(1): degree-D polynomials fail.
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Low-degree framework for detection

SNR<p = Maxgeg(r)<D % likelihood ratio: L = dP/dQ
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Low-degree framework for detection

SNR<p = MaXeg(r)<D Ep[f]f likelihood ratio: L = dP/dQ

= Maxgeg(r)<p —AfL (F g) = Eql[f - g]

= MaXqeg(F)<D 7] 1]l = /(F, )
= ||IL="|
Maximizer: f = L=P := projection of L onto degree-D subspace.

e Since Q has independent entries, we can directly calculate the
projection using orthogonal polynomials w.r.t. Q.
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Warm up: the proof in dense regime

@ For two graphs 51, S, with no isolated vertices, define the
polynomial ¢s, s, by

¢s.({Ah B = [I As [I Bii

(i))€E(S1) (i) €E(S2)

where A; j = 2L B, ;= L4

ai-q)’ T Vali—a)
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Warm up: the proof in dense regime

@ For two graphs 51, S, with no isolated vertices, define the
polynomial ¢s, s, by

ds,,5,({Aij}, {Bij}) = H Aij H Bij,
(i))€E(S1) (i))EE(S2)
h Z,’ i = Aijmq E,‘ i = Bijza .
WA T Ve T T V=)
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Warm up: the proof in dense regime

@ For two graphs 51, S, with no isolated vertices, define the
polynomial ¢s, s, by
ds,,5,({Aij}, {Bij}) = H Aij H Bij,
(i )EE(S1) (i) EE(S2)
Aj—9 B..— Bi-a
Vai-a)' " \/a(i-q)

o {¢s,s : |[E(S1)| + |E(S2)| < D} constitutes a standard orthogonal
basis.

where A; ; =

@ It can be directly calculated that
2 2
HLSDH = Z (Ep[d)f;l,sz])
|E(S1)|+|E(S2)|<D
and
plEGVL. Aut(S1) if 51 =5,

n(n=1)-(n—=[V(S1)[+1)’
0, otherwise.

Ep [¢51 ,52] = {
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Warm up: the proof in dense regime

The problem reduces to controlling

20E(S))] . Aut(S;)?
2 P [n(n—1)---(n— V(S| + VP
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Warm up: the proof in dense regime

The problem reduces to controlling

3 RIES] Aut(S1)?

S15,,[E(S) [+ E(S:)| <D [r(n—=1)---(n=|V(S1)| + 1)

_ Z PIEH] Aut(H)? - #{5; = S, = H}

|E(H)<D/2 [n(n = 1) (n—[V(H)| + 1)]?
— Y e
E(H)I<D/2

@ Itis O(1) provided that D = O(p~1), using the fact that

H{IEH)] = k) < Z#{IEH)\—kIV( ORI
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@ Same proof as dense regime?
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The proof in sparse regime

Same proof as dense regime?
Unfortunately, we still have

SNR<p = [|Lepl? = > IEO
|[E(H)|<D/2

which blows-up for general p < /.

Observation: the main contribution of ||L<p|| comes from counting
“very dense” subgraphs;

However, since g = n~1t°(1) with high probability all subgraphs
(with at most D edges) of (Gy, Gy) should have “low” edge-density.

This inspired us to work with a truncated version of P rather than P
itself.
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@ Recall that (Gy, G2) are subsampled from the parent graph Gy
e Given a graph H = H(V, E), define

®(H) = nlVIIGIEML > Elnumber of H in G(n, q)]

e H is said to be bad if ®(H) < (logn)~!. Furthermore, we say
a graph is admissible if it contains no bad subgraph, and we
say it is inadimissible otherwise. (H admissible
= [E(H)] < (14 0o(1))[V(H)])

@ Denote & for the event that Gg does not contain any bad
subgraph with no more than D? vertices and P’ = P(- | £).

@ Our goal is to prove the following:

e TV(P,P’) = o(1) (first moment method).

/[f
o SNR%D = maxdeg(f)gg j}% = O(l)

Zhangsong Li 16 /20 -



The proof in sparse regime (sketch)

@ Define L' = dP’/dQ, we still have

SNRLp)Z = Lpl?= Y (Erles.s))’

|E(51)|+]E(S2)|<D

where ¢s, s, = [1(; yee(s,) Aii [ jyees,) Biv:
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The proof in sparse regime (sketch)

@ Define L' = dP’/dQ, we still have

2
(SNRISD)2 = ||L/§D||2 = E (EP’ [¢51752])
|[E(S1)|+]|E(S2)I<D

where ¢s, s, = [1(; yee(s,) Aii [ jyees,) Biv:
@ Our intuition to bound SNR’SD:

@ For S or S, inadmissible, since (Gi, G2) do not contain inadmissible
subgraph under ', we expect that Ep [¢s, s,] is negligible.

@ For 51, S, admissible, since we condition on a typical event we
expect that Ep/ [¢51,52] =~ EP[¢51752].

© Under previous two assumption, direct calculation yields

(NRoY~ S
E(H)<D/2,H admissible

@ We can show the number of admissible graphs with k edges is
approximately o™% where o is the Otter's constant, thus

() = O(1) when p < \/a.



Future questions

e What if we consider partial matching (i.e., recover a positive
fraction of m,)?
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[Ganassali-Massoulié-Lelarge '20+,22+]

@ To prove the low-degree hardness for recovery problems,
[Wein-Schramm '20] proposed the following framework: try to

show that
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Future questions

e What if we consider partial matching (i.e., recover a positive
fraction of m,)?

@ It is “easier” than exact matching and intuitively “harder”
than detection, so we expect the same result holds for partial
matching.

@ The partial recovery algorithm is established in
[Ganassali-Massoulié-Lelarge '20+,22+]

@ To prove the low-degree hardness for recovery problems,
[Wein-Schramm '20] proposed the following framework: try to

show that
Ep|r, (1)=1[f] _o()

ma
deg(1<D  \/Ea[F7]

o We can control Ep|., (1)=1[f] in the similar manner but we
don’t know how to control Ep[f2].
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Thank you!
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