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 Consider a pair of graphs with (positive) correlated
structure through certain vertex correspondence.

 In most scenarios, the labels of vertices are lost and the
only observable 1s the topology structure of graphs.

* People are concerned about recovering the hidden corre-
spondence based on such sheer information, as well as
the closely related correlation detection problem.

* Questions of this type are important combinatorial op-
timization problems which have applications in various

3. Previous results

* The existing algorithms are essentially of two types:

— the optimization-based method that relies on “convex
relaxation and rounding”: original optimization prob-

lem 1s hard to solve, but feasible if we enlarge the space
of potential solutions ([FMW X22a, FMW X22b]);

— the signature-based method that relies on “computing
and comparing signatures’: for each vertex, compute
a “‘signature” and match pairs of vertices with similar

signatures. (|[BCL+19, DMWX21]).

fields: e In a later breakthrough [MRT23], the authors found the

social network de-anonymization; first polynomial time algorithm (based on some sophis-
ticated partition tree) that succeeds for exact matching
with correlation a constant close to 1;

* In a recent breakthrough [MW XY 23], the authors sub-
stantially improved [MRT23] and obtained a polynomial
time algorithm which succeeds as long as the correlation
is above /«, where o =~ (.338 is the Otter’s constant.

protein-protein interaction;
computer vision;

machine translation.
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3.0ur results

Theorem 1 (D.-L."2022). There is a polynomial time iter-
ative algorithm for matching Gaussian matrices as long

as the correlation is non-vanishing.

e Strongly suggest the barrier at Otter’s constant in

e In our works [DL22+] and [DL23+], we consider the . |
IMWXY 23] 1s not real in dense region;

algorithmic perspective for this problem in correlated
Erdos-Rényi graphs model.

2.Mathematical settings

* Denote G(n,p) for the law of Erd&s-Rényi graph on
n vertices with edge density p (1.e. each edge 1s kept
independently with probability p).

 New feature: signal 1s stored in a vector where each
coordinate 1s a pair of sets, and signal per coordinate
decreases with iteration but compensated by increase in
dimension;

e Might shed light on many other matching problems too.

Sketch of our iterative algorithm:

(1) Obtain a seed u;, w(u;) : 1 < ¢ < K via brutal-force
searching, where K 1s a large constant;

(2) At each time ¢, construct pairs of sets (F(.t), H(-t)), I <

[/ [/
1 < K¢ according to the edge weights of each vertex v to

the seeds or (F(.t_l), H(.t_1>),1 << K;_q.

[/ [/

(3) Main observation: although the signal in each pair
(F](f), H](f)) will decrease, we may take many linear com-
binations of those edge weights to increase the number

of paired sets, so the total signal 1s increasing in .

e Consider the following idealistic model:

-fixn eN,p,s e (0,1);

— Sample a “mother graph” Gy ~ G(n, p);

— Independently subsample G, G5 C G|y with subsam-
pling probability s;

— Relabel G by a uniform permutation 7™ to obtain G'.

Theorem 2 (D.-L. 2023). There is a polynomial time itera-
tive algorithm for matching dense Erdos-Rényi graphs(i.e.,
when the edge-density q of Erdos-Rényi graphs satisfies
g > n o o(1) for some constant o > 0) as long as the
correlation is non-vanishing.

 Demonstrates the robustness of the iterative match-
ing algorithm we proposed in [DL22+], this type of
‘“‘algorithmic universality’ is closely related to the uni-
versality phenomenon in random matrix theory.

o P: the law of (G, Go) generated as above;

Q: the law of two independent G(n, ps) graphs.  Expected to be sharp in the following sense: as the

correlation tends to 0, no polynomial time algorithm
with a fixed power would be able to match two random
graphs.

e The fundamental problems for this model:

— Detection: given (1, (G9), determine whether it is sam-
pled from P or Q. (e.g. applications in distinguishing
objects by computer.)

— Recovery: given (G, G9) ~ P, recover 7™ as good as
possible. (e.g., applications in de-anonymizing social
networks.)
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 Believed to exhibit information-computation gap, a
major challenge in many random combinatorial optimiza-
tion problems.

* By the collective effort of the community (for example,
see [WXY21], [DD22a] and [DD22b]), now we have a
fairly complete understanding of the information thresh-
olds for the problem of correlation detection and matching
recovery. In contrast, the understanding of the computa-
tional aspect 1s far from being complete.

e Intuitively, the matching 7™ that maximizes the common

e This intuition helps us to reduce the problem into the
network alignment problem of correlated random graphs.

* Unfortunately, the classical graph alignment problem 1s
a NP-hard optimization problem, so we must seek help
from randomness.

* Previously, arguably the best result 1s the recent work
IMWXY23] that obtained a polynomial time algorithm
that succeeds as long as the correlation 1s above the square
root of the Otter’s constant.
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