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1.Motivation

• Consider a pair of graphs with (positive) correlated
structure through certain vertex correspondence.

• In most scenarios, the labels of vertices are lost and the
only observable is the topology structure of graphs.

• People are concerned about recovering the hidden corre-
spondence based on such sheer information, as well as
the closely related correlation detection problem.

• Questions of this type are important combinatorial op-
timization problems which have applications in various
fields:

social network de-anonymization;
protein-protein interaction;
computer vision;
machine translation.
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proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

• In our works [DL22+] and [DL23+], we consider the
algorithmic perspective for this problem in correlated
Erdős-Rényi graphs model.

2.Mathematical settings

• Denote G(n, p) for the law of Erdős-Rényi graph on
n vertices with edge density p (i.e. each edge is kept
independently with probability p).

• Consider the following idealistic model:
– fix n ∈ N, p, s ∈ (0, 1);
– Sample a “mother graph” G0 ∼ G(n, p);
– Independently subsample G1, G

∗
2 ⊂ G0 with subsam-

pling probability s;
– Relabel G∗

2 by a uniform permutation π∗ to obtain G2.

• P: the law of (G1, G2) generated as above;
Q: the law of two independent G(n, ps) graphs.

• The fundamental problems for this model:
– Detection: given (G1, G2), determine whether it is sam-

pled from P or Q. (e.g. applications in distinguishing
objects by computer.)

– Recovery: given (G1, G2) ∼ P, recover π∗ as good as
possible. (e.g., applications in de-anonymizing social
networks.)

• Believed to exhibit information-computation gap, a
major challenge in many random combinatorial optimiza-
tion problems.

• By the collective effort of the community (for example,
see [WXY21], [DD22a] and [DD22b]), now we have a
fairly complete understanding of the information thresh-
olds for the problem of correlation detection and matching
recovery. In contrast, the understanding of the computa-
tional aspect is far from being complete.

• Intuitively, the matching π∗ that maximizes the common
edge between two graphs (i.e. the MLE) should be the
most effective estimator for recovering the latent matching
π.

• This intuition helps us to reduce the problem into the
network alignment problem of correlated random graphs.

• Unfortunately, the classical graph alignment problem is
a NP-hard optimization problem, so we must seek help
from randomness.

• Previously, arguably the best result is the recent work
[MWXY23] that obtained a polynomial time algorithm
that succeeds as long as the correlation is above the square
root of the Otter’s constant.

3. Previous results

• The existing algorithms are essentially of two types:
– the optimization-based method that relies on “convex

relaxation and rounding”: original optimization prob-
lem is hard to solve, but feasible if we enlarge the space
of potential solutions ([FMWX22a, FMWX22b]);

– the signature-based method that relies on “computing
and comparing signatures”: for each vertex, compute
a “signature” and match pairs of vertices with similar
signatures. ([BCL+19, DMWX21]).

• In a later breakthrough [MRT23], the authors found the
first polynomial time algorithm (based on some sophis-
ticated partition tree) that succeeds for exact matching
with correlation a constant close to 1;

• In a recent breakthrough [MWXY23], the authors sub-
stantially improved [MRT23] and obtained a polynomial
time algorithm which succeeds as long as the correlation
is above

√
α, where α ≈ 0.338 is the Otter’s constant.

3.Our results

Theorem 1 (D.-L.’2022).There is a polynomial time iter-
ative algorithm for matching Gaussian matrices as long
as the correlation is non-vanishing.
• Strongly suggest the barrier at Otter’s constant in
[MWXY23] is not real in dense region;

• New feature: signal is stored in a vector where each
coordinate is a pair of sets, and signal per coordinate
decreases with iteration but compensated by increase in
dimension;

• Might shed light on many other matching problems too.
Sketch of our iterative algorithm:

(1) Obtain a seed ui, π(ui) : 1 ≤ i ≤ K via brutal-force
searching, where K is a large constant;

(2) At each time t, construct pairs of sets
(
Γ
(t)
i ,Π

(t)
i

)
, 1 ≤

i ≤ Kt according to the edge weights of each vertex v to
the seeds or

(
Γ
(t−1)
i ,Π

(t−1)
i

)
, 1 ≤ i ≤ Kt−1.

(3) Main observation: although the signal in each pair
(Γ

(t)
k ,Π

(t)
k ) will decrease, we may take many linear com-

binations of those edge weights to increase the number
of paired sets, so the total signal is increasing in t.

Theorem 2 (D.-L.’2023).There is a polynomial time itera-
tive algorithm for matching dense Erdős-Rényi graphs(i.e.,
when the edge-density q of Erdős-Rényi graphs satisfies
q ≥ n−1+α+o(1) for some constant α > 0) as long as the
correlation is non-vanishing.
• Demonstrates the robustness of the iterative match-
ing algorithm we proposed in [DL22+], this type of
“algorithmic universality” is closely related to the uni-
versality phenomenon in random matrix theory.

• Expected to be sharp in the following sense: as the
correlation tends to 0, no polynomial time algorithm
with a fixed power would be able to match two random
graphs.
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